Download the whole paper in PDF format

Huda Kareem Nasser, Samira Faisal Abushilah,
Smoothing Parameters Selection for Samples from Bivariate Circular Distributions.
Int. J. Math. Comput. Sci., 20, no. 1, (2025), 23-31

DOI:

https://doi.org/10.69793/ijmcs/01.2025/huda

Keywords and phrases:

Bivariate circular data, Smoothing parameters, Kernel density estimation, Cross-validation, Maximum likelihood estimation, Jones-Pewsey Distribution.

Abstract:

Kernel density estimates for bivariate circular data are efficient non-parametric estimation methods incorporating free smoothing parameters that significantly influence the estimation process's results. In this paper, we focus our attention on selecting the optimal bandwidth for bivariate circular data from the von Mises distribution using cross-validation and a nonlinear minimized method using circular packages in R software.