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Integral Representation of 2n- Periodic and 
Trigonometrically Convex Functions 

BADlH GHUSAYNI 

Department of Mathematics, North Central College, Naperville, Illinois 60566 

The integral representation given by Levin [ I .  p. 60. Theorem 241 of Zn-periodic and p-trigonometrically 
convex functions which are indicators of holomorphic functions of non-zero finite order p is incorrect. 
C'ounterexamples are given here as well as a corrected version of the representation. 
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We need the foilowing lemma whose proof follows easily from the definition of 
trigonometric convexity: 

LEMMA (a) If h ( y )  and k ( y )  are p-trigonometriea//y convex functions and c is a 
non-negative real number, then h(y )  + k ( y )  and ch(y) are p-trigonometrically convex. 

( b )  For any real number A,  A cos py and A sin py are p-trigonotnetrit~a// convex. 
(c j Lei (!i,jx j) fie a sequence o f  p-trigoncr?le!rl'c,n!!;. cor?vex f l!mtions surh that 

h ( y )  = lim h,(y) ,  as n + CG, exists. Then h ( y )  is p-trigonornetrica/l convex. 

Following is a counterexample for Lcvin's theorem [1, p. 60, Theorem 241 for the 
case of non-integral p and another counterexample for the case of integral p: Define 
h ( y )  on [O,271) by: 

and extend it periodically with period 271. Then, if 

with p = 3 we get 

Y 
Now since s l ( x )  = :, J.3 sin 2 2 0 on [0,2n). it follows that s ( x )  is a nondecreasing 

function. Thus, from Levin [ I ,  p. 571, we conclude that h ( y )  is p-trigonometricaily 
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130 n. GHUSAYNI 

convex. However, 

v 4 3  y 
- - - :z cos - + sin 

2 24 2 '  

which is different from h ! ~ , )  (take for inh~ance J.=O) and consequently (he 
representation given by Levin [ I .  p. 60. Theorem 241 is incorrect for the case of 
.--.- :.-A 1 
Ill ll!-!!!!cs! 4.1 ;,. .. . 

Next. we give a counterexample for the case when ::) I S  an ~nteger:  ('hoose s(u) = x- 
which is clpar!y a nnfi-dccre:rsing - FEnc!ior. satisfving 

Integration by parts gives 

By part5 (a )  and (h) of the lemma, the fundion 

k(y) = h(y) - 4 cos py - L3 sin py 

is trigonometrically convex. Moreover, k(y) is 2~-periodic.  Thus in the representation 
given by Levin [1, p. 60, Theorem 241, k(y) < 0. We now show that this is impossible. 
From Levin [I ,  p. 931, there exists an  entire function j' of order p (0 < p < x') whose 
indicator coincides with k(y). Using the definition of the indicator function 163 and 
the Maximum Principle 13, p. 229, Theorem 10.241 it is easy to see that l,f(z)l < I 
for all z. Since f ( z )  is entire and bounded, f'(,-) must reduce to a constant by Liouville's 
theorem. Consequently j '(z) is of order p = 0. This is the desired contradiction. 

A corrected version of [2, p. 60, Theorem 241 is the following: 

( a )  for  non-intc~grrrl p, 
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TRIGONOMETRICALLY CONVEX FUNCTIONS 

(b )  , for  integral p, 

where 

sin p ( y  - x )  ds(x) + 4 cos pp + B sin p y ,  

h(.r)  cos p i  h atid B = So2' h ( r )  sin pr h. 
71 

P r o o f  Wc need to establish a one-to-one correspondence between the 2ir-pcriobic 
trigonometrically convex functions h ( y )  and the non-decreasing functions s ( y j  
satisfying the statements of the theorem. 

First, suppose that h ( y )  is a 2n-periodic trigonometrically convex function. Then 
h ( y )  has a derivative at  all points except possibly on a countable set N 
(cf. [ l ,  p. 551) .  Let 

if y  is not in N, and if j1 is in N use either the derivative of , f ( y )  (whose indicator is 
h ( y ) )  from the left or  from the right instead of h l ( y ) ,  which exist by 12,  p. 541. Then, 
by Levin [ I ,  p. 571, s ( y )  is a non-decreasing function on 10, 2x1. 

Secondly, we show that every non-decreasing function s ( y )  on  [0,2n] determines 
a 2n-periodic trigonometrically convex function h ( y ) .  By Levin [ l .  p. 571, it suffices 
to show that i'ncrc cxijij h ( y j  siich that 

Equivalently, we must construct the Green's function G ( x ,  y )  for the differential 
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134 B. GHUSAYNI  

It is easy to check that G ( x ,  y )  is a Green's function. Moreover, by Yosida 12, p. 
711, G ( x ,  y )  is uniquely determined. 

If ~ ' ( y )  is continuous, then by Yosida L2, p. 661 

h ( y )  = j:n C ( x ,  p)( - s'(x)) ds 

and thus 

If s ' ( x )  is not continuous, then since s is continuous on [0 ,  2x1 it follows by the (9) 
Bernstein theorem (cf. [5, p. 51) that 

unif~rmly on LO; 2 ~ 1 ;  where Bjj is the Bernsteiu polynomial. Moreover. since s(j:;2n) 
is a non-decreasing function, (Bn(s.  y;2n)J is a sequence of non-decreasing functions 
[6, p. 231. Furthermore. it is clear that Bnfs.  y.!2x) is differentiable and B & T ,  y,%) is 
continuous for each n = 1.2. 3, . . . . Thus, letting t = yj2n, there exist trigonometrically 
convex functions hn(r) such that 

{I, cos p(r - x - a )  dBn@, x )  + cos p(r - x + n )  dBn(s. x )  hn( t )  = v 
2p sin x p  

Hence, it is clear that h ( t )  = lim hn(r) ,  as ii + x. exists. Moreover, h ( t )  is 
trigonometrically convex by the lemma. Furthermore, by Rudin [ I ? ,  p. 139, 
Theorem 7.1 61 

1 
h ( t )  = 

2p sin x p  {J: cos p(t - x - x )  d s ( x )  + cos p(t  - x + x )  d s ( x )  . I 
If s ( y )  is a non-decreasing but non-differentiable function, we can still approximate 
s by a sequence of non-decreasing Bernstein polynomials and then pass to the limit 
as before (cf. [6, p. 231). 

Case 2 p is integral: Let s ( y )  be a non-decreasing function on [O,2n] satisfying 

Using the method of approximation as in (a) we can assume without loss of generality 
that ~ ( y )  is differentiable and s'(j1) is continuous on [O. 2x1. Hence consider 

If we proceed as in the proof of (a,! using equation ( I )  to require of G(x; j) that  
Gxx(.x, y )  + p2G(x,  y )  = 0, G ( 0 ,  y )  = G(2n,  y )  and GJO, y )  = G,(2n, y ) ,  we notice that 
a solution h ( y )  of the equation 

s(yj = h ' ( y )  + p2 h(r)  dr S ' 
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