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Integral Representation of 2n-Periodic and
Trigonometrically Convex Functions

BADIH GHUSAYNI
Department of Mathematics, North Central College, Naperville, lllinois 60566

The integral representation given by Levin [1, p. 60. Theorem 24] of 2z-periodic and p-trigonometrically
convex functions which are indicators of holomorphic functions of non-zero finite order p is incorrect.
Counterexamples are given here as well as a corrected version of the representation.

AMS No. 20DI>
Communicated R P Gilbert
(Receired May 19, 1989)

We need the following lemma whose proof follows easily from the definition of
trigonometric convexity:

LEMMA (a) If h(y) and k(y) are p-trigonometrically convex functions and ¢ is a
non-negative real number, then h(y) + k(y) and ch(y) are p-trigonometrically convex.
(b) For any real number A, A cos py and A sin py are p-trigonomeltrically convex.
(c) Let {h,(x)} be a sequence of p-trigonometrically convex functions such that
h(y) =lim h,(y), as n — oo, exists. Then h(y) is p-trigonometrically convex.

Following is a counterexample for Levin's theorem [1, p. 60, Theorem 24] for the
case of non-integral p and another counterexample for the case of integral p: Define
h(y) on [0, 27) by:

2y — 3
h(y)= —cos —(l—n—) + %\L sin y
3 3 2

and extend it periodically with period 2n. Then, if
s(x)=h(x)+ p? f h(t) dt,
with p =% we get

s(x)= —5 \/3 cos:.

Now since s'(x) = ¢4 V/3sin _=0on [0,27), 1t follows that s(x) is a nondecreasing
i 2

function. Thus. from Levin [1, p. 57]. we conclude that h(y) is p-trigonometrically

129
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convex. However,

| ¥ , , 7 {° 2y—x—mn) . X
. ) cos p(y  x - m)ds(x)= cos sin _ dx
Jpsinmp' )5, RIS 3 2

/
= —13cos” + Y sin
2 24

]

which is different from h(y) (take for instance y=0) and consequently the
representation given by Levin [1, p. 60, Theorem 247 is incorrect for the case of
non-integral g.
Next, we give a counterexample for the case when p is an integer: Choose s{x) = x
which is clearly a non-decreasing function satisfving
f2n

J e ds(x)=0.
[¢)

Integration by parts gives

1 fy 1
— (y —x)sinp(y—x)ds(x)=— -

2mo . 02
Hoy—2 f

By parts (a) and (b) of the lemma, the function
k{y)=h(y)— A cos py — Bsin py

is trigonometrically convex. Morcover, k(y) is 2n-periodic. Thus in the representation
given by Levin [1, p. 60, Theorem 247, k(y) < 0. We now show that this is impossible.
From Levin [1, p. 93], there exists an entire function f of order p (0 < p < o) whose
indicator coincides with k(y). Using the definition of the indicator function [6] and
the Maximum Principle [3, p. 229, Theorem 10.24] it is easy to see that | f(z)] < 1
for all z. Since f(z) is entire and bounded, f(z) must reduce to a constant by Liouville’s
theorem. Consequently f(z) is of order p =0. This is the desired contradiction.
A corrected version of [2, p. 60, Theorem 24] is the following:

THEOREM  The general form of a 2n-periodic and p-trigonometrically convex function
h(y) is the following:

(a) for non-integral p,

1 (¥ [f2m
h(y)= U cos p(yfxfn)ds(x)th
0

— cos p(v — x + m)ds(x);:
2p sin mp

v
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(b) for integral p,

1 2n
hiy)= — J (x — y)sin p(y — x) ds(x)
2np Jo

1 .
— J sin p(y — x) ds(x) + A cos py + B sin py,
pJy
where
2n )
J e ds(x) =0,
0
1 27 1 2n
A= f h(x)cos px dx and B= J hix)sin px dx.
T Jo TJo

in both cases s(y) is given by

v

S =H )+ p° J ) dr.

Conversely, if s(x) is a non-decreasing function and if h(y) is defined as in parr (a),
then h{y) is p-trigonometrically convex. If s(x) is a non-decreasing function satisfying

2n
e ds(x)=0,
0
and if hiy) is defined as in part (b) (where A and B are arbitrary real constants), then
h(y) is p-trigonomerrically convex.

Proof We need to establish a one-to-one correspondence between the 2r-periodic
trigonometrically convex functions h(y) and the non-decreasing functions s(y)
satisfying the statements of the theorem.

First, suppose that h(y) is a 2zn-periodic trigonometrically convex function. Then
h(y) has a derivative at all points except possibly on a countable set N
(cf. 1, p. 55]). Let

s(y)=h'(y)+ p* fy h(t) dt

if yis not in N, and if y is in N use either the derivative of f(y) (whose indicator is
h(y)) from the left or from the right instead of h’(y), which exist by [2, p. 54). Then,
by Levin [1, p. 57], s(y) is a non-decreasing function on [0, 2x].

Secondly, we show that every non-decreasing function s(y) on [0, 27] determines
a 2rn-periodic trigonometrically convex function h(y). By Levin [ 1. p. 57], it suffices
to show that there exists hi{y) such that

¥

s(y)=h()+p° J ht) dr.

Equivalently, we must construct the Green’s function G(x,y) for the differential



Downloaded by [American University of Beirut] at 05:01 17 December 2012

132 B. GHUSAYNI

operator h” + p*h with some boundary conditions (we are assuming here that s(y)

is differentiable, with the case of non-differentiable s(y) treated later in this paper).
To determine these boundary conditions observe that

G(x., y)Yh"(x) dx + p? J G(x. v)h(x)dx.

(V]

2n

2n
f G(x, ) h"(x) + p2h(x)} dx :j

0 0

Integrating by parts twice we can write
2n

(1) j G(x, p){h"(x) + p?h(x)} dx = G(2r, y)I'(21) — G(0, y)h'(0)

0

—1G(27, y)h(2m) — G,(0, y)h(0)}
2n
+ f {G, (x.v)+ p>G(x, V)V h(x) dx.

Hence we require of G the periodic boundary conditions

GO,5)=G2ry),  GJ0.y)=G2m.y)
and
Gxx(x’ )') + sz(x, _V) =0.

Now, the general solution of

h'(x)+ p?h(x)=0

hy(x) = A cos px + Bsin px.
From the above boundary conditions, we can write
ho(0) = hy(27) and hy(0) = hy(2m).
Thus we obtain
(1 —cos 2np)A — (sin 2np)B =0, (sin 27p)A + (1 —cos 2np)B = 0.

The determinant of coefficients of 4 and B in the above system is 2(1 — cos 2np).
Thus we consider two cases:

Case 1 p is non-integral: In this case 1 —cos 2np is non-zero. Thus A=B=0
and consequently there is no non-trivial solution hy(x) of

h(x)+ p*h(x)=0
under the prescribed boundary conditions. Since

Gylx, ¥) +p*Glx, y) =0,
we have
¢, €0S px + ¢, sin px, if 0<x<y
G(x,y)= ) .
€3 €08 px + ¢, Sin px, if y<x<2nm,
where ¢; 1s a function ¢;(y) (i=1, 2, 3, 4). By the boundary condition

G(0, x) = G(2x, x)
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we have
(2) ¢, =4 €08 2mp + ¢y sin 27p.
Since G(x, v) is differentiable as a function of x for a fixed 3,

pC, sin px + pe, €os px, if 0<x<y

G.(x, '\‘)3\{ . .
| —pe,ysin px + peg cos px, i y<x<2n.

By the boundary condition
G.(0,y)=G.(2m. y)

we get
(3) ¢, = —cysin 2mp 4 ¢, cos 2np.
Since . i ,
Gy +0.3)— Gy =0, 3= —1
we casily see that
4) (¢, —c3)psin py+ (¢, — e —peos py)= — L

By the continuity of G(x, y) at (x.y), 0 <x.y<2m.
(5) (¢, — €3} COs py + (¢, — ¢4 sin py = 0.

Solving equations (3.4) and (3.5) for ¢; — ¢, and ¢, — ¢, we see that

(6) ¢, -y = —sin(py)/p
and
(7) ¢, — e, =coslpy)/p.
Substituting
¢y =c;+sin(py)ip and c,=Cy—cos(py)ip

into equations (2) and (3) we easily see that

(8) (1 —cos 2np)c, — (sin 2mp)c, = sin p(y — 2m)/p,
9) (sin 2mp)c, + (1 —cos 2mp)c, = —cos p(y — 2m)/p.
Solving equations (8) and (9) for ¢, and ¢, we find that
¢, = —cos p(y—m)/2psinmp and ¢, = —sin p(y —n)/2psinwp.
Now
¢y = —cos ply+7)/2psin mp and ¢y = —sin ply +n)/2p sin mp.

Thus, it is easy to see that

1 .
- —cosply x m), if 0<x<y
2psin wp
G(x,y)=

— S cos p(y —x+ 7). if y<x<2m.
2p sin np
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It is easy to check that G(x, y) is a Green’s function. Moreover, by Yosida [2, p.
717, G(x, v) is uniquely determined.
If s'(y) is continuous, then by Yosida [2, p. 66]

h(v) =J G(x, y){—s'(x)} dx
0
and thus

¥ f2n
h(y) : {J cos p(y — x — n)ds(x)+J cos p(y—x+n)ds(x)}.

—2psinnp o v

If s'(x) is not continuous, then since s<2y> is continuous on [0, 27] it follows by the
n

Bernstein theorem (cf. [5, p. 5]) that
lim B, (s, y/2n) = s{y/2n), as " o>

uniformly on [0, 2r], where B, is the Bernstein polynomial. Moreover. since s(y/2nr)
is a non-decreasing function, {B,(s. y/2r)! is a sequence of non-decreasing functions
[6. p. 23]. Furthermore, it is clear that B,(s, v/2n) is differentiable and B, (s, y/2m) is
continuous foreachn=1.2.3, ... . Thus, letting t = y/2n, there exist trigonometrically
convex functions h,(r) such that

2n

h, (1)

n

Jcosp(r—x—n)dB,,(s,x)+J cosp(t—x+n)dB,,(s.x)}.

2p sin ﬂp{ 0 '
Hence, it is clear that ht)=lmh (1), as n > oc. exists. Moreover. h{t) is
\t) n\t/s i)
trigonometrically convex by the lemma. Furthermore, by Rudin [13, p. 139,
Theorem 7.16]

t 2n
hir)y= - ffl———— - {j cos p(r — x —m) ds(x) + J‘ cos p(t — x + m) ds(.\')} .

B 2;) sin n}) o .

If s(y) is a non-decreasing but non-differentiable function, we can still approximate
s by a sequence of non-decreasing Bernstein polynomials and then pass to the limit
as before (cf. [6, p. 23]).

Case 2 p is integral: Let s(y) be a non-decreasing function on [0, 27] satisfying

2n
f eP* ds(x)=0.

0
Using the method of approximation as in (a) we can assume without loss of generality
that s(v) is differentiable and s'(y) is continuous on [0. 2n]. Hence consider
h'(y)+ /)zh(y) =4s'(y).

If we proceed as in the proof of (a) using equation (1) to require of G(x, y) that
G . (x,y)+ p?G(x,y)=0, GO, y)= G(2r, y) and G (0, y) = G (2r, y), we notice that
a solution h(y) of the equation

s(y)=h(v)+p? J h(r) dr
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cannot be constructed when p is an integer, because in this case the homogeneous
differential equation

h(y)+ p*h(y)=0

has the periodic solutions cos py and sin py and therefore there is no Green'’s function
satisfying the periodic boundary conditions. To see this, we argue by contradiction.
Suppose

¢, COS pX + ¢, 8in px, if 0<x<y

Gix,y)= {

3 COS pX + ¢4 Sin px, if y<x<2n,

where ¢; is a function ¢,(y) (i=1.2.3,4).
By the boundary conditions

GO, y)=G(2n. y) G 0. v)=G,(2m, y),
it follows that €, =13 and Ca = Cy. Now
Gy +0,5) = Gy —0.y) = —1

enaralized (Gree
11284 STee

gives the desired contradiction. Nevertheless, we can construct a generaiize
function that gives the periodic solution h(y) of the inhomogeneous differential
equation

n’e
i1 5

W (y)+ p*h(y)=5s'(y)

of the homogeneous differential equation by requiring that

when s'(y) is orthogonal to the solutions cos py and sin py (i.e. [§7 ¢"*s'(x) dx =0)

G (x. V) + p2G(x, y) = —(x — y) + &, COS py COS pX + o, Sin py sin px

with &, and «, chosen so that

2n
J (sin px){ —3(x — y) + a, cos py cos px + &, sin py sin px}tdx=0
4}

and

2n
J (cos px){ —3(x — y) + o4 COS py COS pX + &, Sin py sin px}dx=0,
0

where (1) is Dirac’s d-function (8{t) = 0 if ¢ is different from zero). Using the facts that

2r

2n
j (sin px) d(x — y) dx =sin py and f (cos px) &(x — y) dx = cos py,

0 o]
a direct computation shows that «, = o, = 1/. Thus the required condition becomes
1
Glx, v)+p?G(x, y) = —0(x —y) + oS p(y—x).

Since d(x — y) = 0 when x is different from y and since — (1/2mp){x sin p(y — x)} is the
particular solution due to the additional (1/7) cos p(y — X) in the differential equation,
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we can write

xsinp(y—x) f{Acospx+Bsinpx, O0<x<y
Glx.y)= ————- + _
2np (C cos px + D sin px. y<x<2nm,
where A. B. C and D are functions of vy to be determined. Using the boundary
conditions, we obtain

sin py
(10) C—a="1P
p
and
Cos py
(11) B-D="20Y
1Y
Thus
. './Acespx+Bsmp¥ 0<x <)
xsinp{x—y) ] in ol \
G = — R . sin p{y — Xx)
2np l=: A4 cos px + Bsin px_} + LY , ve x<On
\ I
That 1s
) (0, Ogsx<y
x sin p(y — x) . )
(12 G= ——- —~+ A cos px + Bsin px + |sin oy —x)
2mp L . <x<2n
I

Since sin px and cos px are non-trivial solutions of

qino nne ecnnditinn afthe dafinitian afthe goneralizad (Iraan’c inclion. we can write
Ualllé ALV VLU SIVINOIVEE U UL IVEAVIWIIIIISIVIVN UMY L 5\411\/1 AlIZCUE NJ1uvlil D 1urivil 11, ¥Y¥L Ldll vwillv
2n
(13) G(x, y)cos px dx =0
0]
and
2n
(14) G(x, y)sin px dx =0.
Q

Considering equation (13), we get

1 2n ) 2n
—J- xsmp(y—x)cospxdx%—AJ cos? px dx
2np Jo 0
2n 1 2n
+BJ sin px cos px dx + - f sin p(y — x) cos px dx =0.
o Pdy
Hence
1 (2n ) ) 4 (f2n
S J x{sin py + sin p(y — 2x)} dx + — ' (1 + cos 2px) dx
4rp Jo 20

B 27 1 2z
+J sin 2px dx + J {sin py + sin p(y — 2x)} dx =0.
2 Jo 2pJ,
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But {§7sin 2px dx =0 and hence we can solve for A by integration and get
_ysinpy  cos py sin py
T oo Ampr 2

Similarly. by consider equation (14), we get

sin py  cos py ¥ COS Py
= = . - )

Anp 2p 2mp
Substituting 4 and B into equation (12) and simplifying the resuit we get
(- vsi ) ) sinply—x) | s
y—X sinp(y—x) cosp(yv—x) sinp{y—x
G(x,y)= s + [( — nply =4 + slnp( —~x)
27rp dnp? 2p . y<x<2m
L r’)
Now it is trivial to see that G(x. v) is a gencralized Green's function.
By equation (1) and the boundary conditons. we have
f2n fin A
! Glx, V) x) + pThix)) dx = . MG lx, vi+ p?Glx, )y dx.
Jo JO
So
" 2n 2n 1 1
J G(x, y)s'(x)dx = h(x){—é(x —y)+ - cos p(y — X)f dx
0 0 T
{'21: 1 2n
= *J hx)d(x —y)dx + ' h(x)cos p{y — x)dx
0 TJo
r2
= —h(y ’ x) cos p(y — X) dx.
Thus
1 [ ,
hiy)= J Gix, y)yds(x)+ J h(x){cos py cos px +sin py sin pxj dx
TJo
,[ (x)+ A cos py + Bsin py,
where
1 2
A= J h(x) cos px dx and B:J h{x) sin px dx.
TJo TJo

Using |27 €' ds(x) = 0, a simple computation leads to

] 2n )
hly)=— J (x — y)sin p(v — x} ds(x)
2np Jo

] 2n )
- J‘ sin p{y — x) ds(x) + A cos py + B sin py.
¥

p
The proof of the converse follows from Levin [1. p. 57] and the Leibnitz formula

[7. p. 245].
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