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Abstract

In this paper, we show that (0, 0, 0) and (1, 0, 6) are the only two
non-negative integer solutions of the exponential Diophantine equation
37x − 5y = z

2.

1 Introduction

The search for solutions to the exponential Diophantine equation in the form
ax − by = z2 has been going on for a long time. In 2013, Sroysang [3]
showed that the exponential Diophantine equation 2x + 37y = z2 has the
unique non-negative integer solution. In 2020, Burshtein [1] investigated all
the solutions of the Diophantine equations 13x − 5y = z2 and 19x − 5y = z2.
In 2021, Thongnak, Chuayjan and Kaewong [5] proved that the Diophantine
equation 7x − 5y = z2 has a unique non-negative integer solution. In 2023
Tadee [4] studied non-negative integer solutions of the Diophantine equation
nx − 5y = z2 where n ≡ 11 (mod 20).

In this paper, we show that (0, 0, 0) and (1, 0, 6) are the only two solutions
(x, y, z) for the exponential Diophantine equation 37x − 5y = z2 where x, y

and z are non-negative integers.
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2 Preliminaries

The main method in proving our results is modular arithmetic. For properties
of modular arithmetic that are utilized in deriving the results, we refer the
reader to [2].

We use the following lemmas which are related to congruences.

Lemma 2.1. If n is an integer, then n2 ≡ 0, 1, 4 (mod 5).

Lemma 2.2. If n is an even number, then n2 ≡ 0, 4 (mod 6).

The following definition and lemma are also required in our study.

Definition 2.3. Let a and n be relatively prime positive integers. Then the

least positive integer x such that ax ≡ 1 (mod n) is called the order of a
modulo n. We denote the order of a modulo n by ordna

Example. ord1137 = 5 and ord2537 = 20.

Lemma 2.4. Let a and n be relatively prime integers with n > 0. Then the

positive integer k is a solution of the congruence ak ≡ 1 (mod n) if and only

if ordna|k.

3 Main Results

Theorem 3.1. Let x, y and z be non-negative integers. The Diophantine

equation

37x − 5y = z2 (3.1)

has exactly the two solutions (x, y, z) = (0, 0, 0) and (1, 0, 6).

Proof. Let (x, y, z) be a non-negative integer solution of (3.1). Then obvi-
ously z is even. Since 37 ≡ 1 (mod 6) and 5 ≡ −1 (mod 6), the equation
(3.1) becomes 1− (−1)y ≡ z2 (mod 6) and consequently y is even by Lemma
2.2. Next, we divide the proof into the following two cases:

Case 1. x is odd. If x = 1, then (3.1) is 37 − 5y = z2. Since z2 ≥ 0, we
have 37 ≥ 5y. This implies that y ∈ {0, 1, 2}. One can easily see that y = 0
and hence z = 6. Consequently, (1, 0, 6) is a solution of (3.1).
Suppose that x > 1. Then there exists a positive integer k such that x =
2k + 1. Therefore, the equation (3.1) becomes 372k+1 − 5y = z2. It follows
that 372k+1 ≡ z2 (mod 5). Now, we consider

372k+1 ≡ 37(372k) ≡ 2(22k) ≡ 2(−1)k ≡

{

3 if k is odd

2 if k is even
(mod 5).
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This implies that z2 ≡ 2, 3 (mod 5). This contradicts Lemma 2.1. From this
we obtain (x, y, z) = (1, 0, 6) is as a solution of (3.1).

Case 2. x is even. If x = 0, then 1 − 5y = z2. Since z2 ≥ 0, it follows
that y = 0 and so z = 0. Consequently, (x, y, z) = (0, 0, 0) is a solution of
(3.1).

Suppose that x ≥ 2. Then there exists a positive integer k such that
x = 2k. Thus (3.1) becomes 372k − 5y = z2. Hence

5y = 372k − z2 = (37k − z)(37k + z).

Since 5 is a prime number, we have 37k − z = 5a and 37k + z = 5y−a, where
a is a non-negative integer. Then

2(37k) = 5a + 5y−a = 5a(1 + 5y−2a)

which implies that a = 0. Therefore, 2(37k) = 1+ 5y. Since y is even, y = 2l
for some integer l. This yields

2(37k) = 1 + 25l. (3.2)

Therefore, 2(37k) ≡ 1 (mod 25). From (3.2) and the fact that 379 ≡ 2
(mod 25), we obtain 2(37k) ≡ 37k+9 ≡ 1 (mod 25). Since ord2537 = 20, by
Lemma 2.4, 20|(k+9) and so k ≡ 11 (mod 20). Then there exists an integer
m such that k = 20m+ 11. Equation (3.2) then becomes

2(3720m+11) = 1 + 25l.

From the fact that 375 ≡ 1 (mod 11), we get the useful congruences:

2(3720m+11) ≡ 2(37)(375(4m+2)) ≡ 2(4)(1) ≡ 8 (mod 11). (3.3)

However,

1 + 25l ≡































4 if l = 5u+ 1

10 if l = 5u+ 2

6 if l = 5u+ 3 (mod 11)

5 if l = 5u+ 4

2 if l = 5u

contradicts (3.3). From this, we obtain (x, y, z) = (0, 0, 0) as the solution of
(3.1). This completes the proof.
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