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Abstract

Large-scale optimization has become an important research theme

in the evolutionary computing field. To take advantage of this progress,

sophisticated algorithms have been merged in commercially inexpen-

sive software, like python, to increase the aptitude of large data han-

dling. In this paper, we propose an advanced algorithm, to compare

Augmented and Penalty methods for resolving large-scale constrained

problems of optimization. We highlight the advantages of an Aug-

mented method in terms of faster convergence, better numerical stabil-

ity and more robust performance while noting the behavior of Penalty

Methods like parameter sensitivity issues, degraded performance near

optimal and numerical instabilities. Using numerical experiments, our

algorithm is quickly convergent and is more reliable.

1 Introduction

Optimization is a process to access the best objective under specific con-
straints [1]. Optimization techniques are vastly utilized in all engineering
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fields to pick the best design. Assume the aggregate numeral of factors is
n [2]. The optimization theme of a single-objective may be characterized as
follows [3]:
Select factors from an n-dimensional vector x = [x1, x2, . . . , xn]

T

minimize f(x1, x2, . . . , xn)

subject to yj(x) ≤ 0, j = 1, 2, . . . , p1

gu(x) = 0, u = 1, 2, . . . , p2.

(1.1)

where f(x) = f(x1, x2, . . . , xn) is an objective function, each yj(x) ≤ 0 is
the inequality constraint and gu(x) = 0 is the equality constraint, (p2 < n)
within the factor range xL

i ≤ xi≤ xU
i , i = 1, 2, . . . , n, with xL

i and xU
i denoting

the lower and upper confine of a factor xi [4].

2 Mathematical Model of Augmented Lagrange

Method (ALM)

General Augmented Lagrange multipliers have been presented to address
optimization problems constraints of the type [5]:

minimize f(x)

subject to h(x) = 0
(2.2)

where f : Rn −→ R and h : Rn −→ Rm. An Augmented Lagrange Function
can be defined as follows [6]:
L(x, λ, ρ) = f(x) + 〈λ, h(x)〉+ ρ

2
‖ h(x) ‖2F .

When the scalar ρ is positive, the Augmented Lagrange Multiplier can be
utilized to solve optimization problems. When ρm is an increasing sequence
and both f and h are continuously differentiable functions, the ALM deter-
mines an ideal step size for updating λm depending on the penalty parameter
ρm.
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Algorithm 1: Comparison of Augmented Lagrange and Penalty
Methods
1. Problem Definition
Consider an n-dimensional convex objective function:
f(x) =

∑
(x2

i ) +
∑

(sin(xi)) + exp((mean(x))
2. Augmented Lagrange Method Algorithm
Initialization: Input: Initial point x0 ∈ Rn, parameter µ = 1,
λ = 0,max− iter, factor β = 1.5
1. For k = 1 to max− iter:
a. Solve the sub-problem: minimizeLA(x) = f(x) + λTx+ (µ

2
) ‖ x ‖2

where f(x) is the original objective function, λTx is the Lagrangian
term, (µ

2
) ‖ x ‖2 is the quadratic penalty term

b. Update Lagrange multipliers: λk+1 = λk + µx

c. Update the penalty parameter: µk+1 = βµk

d. Store iteration results: Current iteration k, Objective value f(x),
Current solution x

3. Penalty Method Algorithm
Initialization: Input: Initial point x0 ∈ Rn, parameter ρ = 1,
max− iter, factor γ = 2
1. For k = 1 to max− iter:
a. Solve the sub-problem: minimize p(x) = f(x) + ρ ‖ x ‖2 where
f(x)is the original objective function, ρ ‖ x ‖2 is the penalty term
b. Update the penalty parameter ρk+1 = γρk
c. Store iteration results: Current iteration k, objective value f(x),
current solution x

The algorithm presents two related but distinct optimization methods:
ALM and Penalty method. The given objective function has three terms:
A quadratic term

∑
(x2

i ) that grows quickly as variables move from zero,
a term

∑
(sin(xi)) that adds periodic behavior, and an exponential term

exp(mean(x)) that grows very quickly with the average of the variables. As
ALM combines aspects of the Penalty and Lagrange Methods, it introduces
Lagrange Multipliers λ to handle constraints, uses a quadratic penalty term
(µ
2
) ‖ x ‖2 that helps with convergence, updates both the penalty parameter

µ and the Lagrange Multipliers λ iteratively and the Penalty Parameter
increases by a factor β = 1.5 at each iteration. The Penalty Method only
uses ρ ‖ x ‖2 without Lagrange multipliers, increases the Penalty Parameter
ρ aggressively (factor γ = 2) and generally requires more iterations but is
easier to implement. ALM typically converges faster due to the Lagrange
multiplier terms and provides better constraint due to the dual updates.
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Table 1: The numerical results of comparison of Augmented Lagrange and
Penalty Methods

i Aug.Obj.
value

Solution Pen.Obj.
value

Solution

1 -0.41335 [-0.3587 -0.3587 -0.3587
-0.3587 -0.3587]

-0.22911 [-0.2782 -0.2782 -0.2782
-0.2782 -0.2782]

2 -0.05352 [-0.222 -0.222 -0.222 -
0.222 -0.222]

0.05870 [-0.1912 -0.1912 -0.1912
-0.1912 -0.1912]

3 0.39285 [-0.1131 -0.1131 -0.1131
-0.1131 -0.1131]

0.37387 [-0.1171 -0.1171 -0.1171
-0.1171 -0.1171]

4 0.73901 [-0.0454 -0.0454 -0.0454
-0.0454 -0.0454]

0.62900 [-0.0658 -0.0658 -0.0658
-0.0658 -0.0658]

5 0.91792 [-0.0139 -0.0139 -0.0139
-0.0139 -0.0139]

0.79635 [-0.0351 -0.0351 -0.0351
-0.0351 -0.0351]

6 0.98133 [-0.0031 -0.0031 -0.0031
-0.0031 -0.0031]

0.89306 [-0.0181 -0.0181 -0.0181
-0.0181 -0.0181]

7 0.99696 [-0.0005 -0.0005 -0.0005
-0.0005 -0.0005]

0.94517 [-0.0092 -0.0092 -0.0092
-0.0092 -0.0092]

8 0.99965 [-0.0001 -0.0001 -0.0001
-0.0001 -0.0001]

0.97223 [-0.0046 -0.0046 -0.0046
-0.0046 -0.0046]

9 0.99997 [-0. -0. -0. -0. -0.] 0.98602 [-0.0023 -0.0023 -0.0023
-0.0023 -0.0023]

10 0.99999 [-0. -0. -0. -0. -0.] 0.99299 [-0.0012 -0.0012 -0.0012
-0.0012 -0.0012]

11 1.00000 [-0. -0. -0. -0. -0.] 0.99649 [-0.0006 -0.0006 -0.0006
-0.0006 -0.0006]

12 1.00000 [-0. -0. -0. -0. -0.] 0.99824 [-0.0003 -0.0003 -0.0003
-0.0003 -0.0003]

13 1.00000 [-0. -0. -0. -0. -0.] 0.99912 [-0.0001 -0.0001 -0.0001
-0.0001 -0.0001]

14 1.00000 [-0. -0. -0. -0. -0.] 0.99956 [-0.0001 -0.0001 -0.0001
-0.0001 -0.0001]

15 1.00000 [-0. -0. -0. -0. -0.] 0.99978 [-0. -0. -0. -0. -0.]
16 1.00000 [0. 0. 0. 0. 0.] 0.99989 [-0. -0. -0. -0. -0.]
17 1.00000 [0. 0. 0. 0. 0.] 0.99994 [-0. -0. -0. -0. -0.]
18 1.00000 [-0. -0. -0. -0. -0.] 0.99997 [-0. -0. -0. -0. -0.]
19 1.00000 [-0. -0. -0. -0. -0.] 0.99998 [-0. -0. -0. -0. -0.]
20 1.00000 [-0. -0. -0. -0. -0.] 0.99999 [-0. -0. -0. -0. -0.]
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Figure 1: Comparison of Augmented Lagrange and Penalty Methods

These tables compare the performance of ALM and the Penalty method
over 20 iterations each. As for convergence speed that ALM reaches the op-
timal objective value of 1.0 by iteration 11 and penalty method approaches
but doesn’t quite reach 1.0, getting to 0.999993 by iteration 20 then ALM
shows faster convergence overall while initial behavior that ALM starts at
a lower objective value -0.413359 but recovers more quickly and penalty
method starts from a higher point -0.229118 but progresses more gradu-
ally then numerical stability that ALM stabilizes completely after iteration
11 and penalty method continues making very small improvements until the
final iteration. This comparison explains that ALM is more efficient for
this particular optimization problem, achieving better convergence in fewer
iterations. This plot compares two optimization methods the Augmented La-
grange Method left in blue and the Penalty method right in red,both graphs
show the convergence behavior of these methods over 20 iterations.The y-
axis represents the objective value ranging from about-0.4 to 1.0,while the
x-axis shows the number of iterations. Both methods start with negative
objective values around -0.2 to -0.4 and show rapid initial improvement in
the first 5-7 iterations then eventually converge to a value close to 1. ALM
appears to reach its final value slightly faster,showing steeper initial improve-
ment and the penalty method’s curve is slightly smoother in its approach to
convergence.
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3 Conclusion

We have suggested, tested and analyzed an advanced algorithm which is in-
clude comparison between two approximate methods,which are Augmented
and penalty, about it is a strategy for converting constrained problems into
unconstrained ones.We have proved that ALM demonstrates slightly faster
convergence and typically offers better numerical stability,making it particu-
larly valuable for real-world applications like engineering design optimiza-
tion,training neural networks with constraints and resource allocation in
manufacturing while both methods can handle large-scale problems, ALM
performs better due to its strong theoretical convergence properties and also
it can handle equality and inequality constraints effectively and generally
more robust than simple penalty methods may have difficulty meeting strict
constraints and slower convergence for complex problems.Based on the re-
sults we obtained ALM showing generally faster convergence.
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