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Abstract

In this paper, we employ matrix methods to analyze the Gibonacci

sequence, a generalization of Fibonacci-Lucas sequences. We derive an

explicit formula for the nth term of this sequence and delve into its

fundamental properties.

1 Introduction

The Fibonacci and Lucas sequences are two of the most famous number
sequences in mathematics, captivating mathematicians and enthusiasts for
centuries. These sequences possess intriguing properties and have applica-
tions across various fields from nature to computer science.

The Fibonacci sequence, denoted as {Fn}
∞

n=0, is defined by the recurrence
relation: Fn = Fn−1 + Fn−2, for all n > 2, with initial values F0 = 0 and
F1 = 1. The Lucas sequence, denoted as {Ln}

∞

n=0 , is closely related to the
Fibonacci sequence and is defined by the same recurrence relation but with
different initial conditions: L0 = 2 and L1 = 1.
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Both sequences exhibit a fascinating relationship with linear algebra. Koshy
[4] explored the use of matrices and determinants in Fibonacci numbers.
Cahill and Narayan [1] revealed how Fibonacci and Lucas numbers can be
represented as determinants of some tridiagonal matrices. Macfarlane [5]
extended this approach, utilizing determinant properties to derive new iden-
tities involving Fibonacci and related numbers. Additionally, numerous gen-
eralizations of these numbers have been presented in various forms [2],[3],[6].

In this paper, we investigate a generalized Fibonacci-Lucas type sequence,
known as the Gibonacci sequence, using a matrix-based approach. We derive
an explicit formula for the general term of these sequences and explore some
of its fundamental properties using matrix methods.

2 Main results

The Gibonacci sequence {Gn}
∞

n=0 is defined by the recurrence relation:

Gn = Gn−1 +Gn−2, for all n > 2,

with arbitrary initial values G0 = a and G1 = b, where a, b are integers.
The first few terms of {Gn}

∞

n=0 are a, b, a + b, a + 2b, 2a+ 3b, .... Each num-
ber in the sequence is called a Gibonacci number, with Gn denoting the nth
term. Notably, if a = 0 and b = 1, then the sequence reduces to the classical
Fibonacci sequence. Moreover, if a = 2 and b = 1, then it becomes the
classical Lucas sequence.
We now analyze the Gibonacci sequence using eigenvalues and eigenvectors
of a 2×2 matrix and find a general explicit formula for its nth term {Gn}

∞

n=0.

Let us consider the matrix A =

[

0 1
1 1

]

and the matrix Xn =

[

Gn

Gn+1

]

, asso-

ciated with the Gibonacci sequence {Gn}
∞

n=0.

It is easy to show that AXn = Xn+1 and Xn = AnX0, where X0 =

[

a

b

]

.

Theorem 2.1. The nth Gibonacci sequence is given by for nonnegative

integer n,

Gn =
a(αn−1−βn−1)+b(αn−βn)

√
5

,

where α, β are the roots of the characteristic equation of the matrix

A =

[

0 1
1 1

]

.
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Proof. The characteristic equation of the matrix A =

[

0 1
1 1

]

is

λ2 − λ− 1 = 0. So, the eigenvalues are α = 1+
√
5

2
and β = 1−

√
5

2
.

All eigenvectors v corresponding to α = 1+
√
5

2
must satisfy

[

−α 1
1 1− α

]

v = 0

and so we may take v1 =

[

−β

1

]

. Similarly, all eigenvectors u corresponding

to β = 1−
√
5

2
must satisfy

[

−β 1
1 1− β

]

u = 0 and so we may take u1 =

[

−α

1

]

.

Let P =

[

−β −α

1 1

]

. Then,

P−1AP = 1
α−β

[

1 α

−1 −β

] [

0 1
1 1

] [

−β −α

1 1

]

= 1
α−β

[

α(α− β) 0
0 β(α− β)

]

=

[

α 0
0 β

]

It follows that

An = P

[

αn 0
0 βn

]

P−1 = 1√
5

[

αn−1 − βn−1 αn − βn

αn − βn αn+1 − βn+1

]

Thus,

[

Gn

Gn+1

]

= 1√
5

[

αn−1 − βn−1 αn − βn

αn − βn αn+1 − βn+1

] [

a

b

]

.

By equating the corresponding entries of the matrices on both sides, we

obtainGn =
a(αn−1−βn−1)+b(αn−βn)

√
5

and so the proof of the theorem is complete.�

Theorem 2.2. For a nonnegative integer n, we have the following formula:

G2
0 +G2

1 +G2
2 + · · ·+G2

n = GnGn+1 + a2 − ab.

Proof. The proof by induction on n. The base case of n = 0 is obvious.
Now, assume the theorem is true for some n ≥ 0. Then

G2
0 +G2

1 +G2
2 + · · ·+G2

n +G2
n+1 =

(

GnGn+1 + a2 − ab
)

+G2
n+1

=
(

GnGn+1 +G2
n+1

)

+ a2 − ab

= Gn+1 (Gn +Gn+1) + a2 − ab

= Gn+1Gn+2 + a2 − ab

This is the statement of the theorem for n+1. Therefore, the result follows.�
From now on, let Sn represent the sum of first n+ 1 terms of the Gibonacci
sequence {Gn}

α

n=0.
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Theorem 2.3. Let n ≥ 2 be an integer. Then Sn = b+ Sn−1 + Sn−2.

The proof can be easily demonstrated using induction on n.

Corollary 2.4. Let n ≥ 0 be an integer. Then Sn = Gn+2 − b.

From this result, we derive the well-known identities involving Fibonacci
and Lucas numbers.

Corollary 2.5. Let n ≥ 0 be an integer. Then
∑n

k=0 Fk = Fn+2 − 1 and
∑n

k=0Lk = Ln+2 − 1.

Next, we consider the matrix B =





1 0 0
0 0 1
1 1 1



 and the matrix

Yn =





2b 2b 2b
Sn − b Sn+1 − b Sn+2 − b

Sn+1 − b Sn+2 − b Sn+3 − b



 for any integer n ≥ 0.

It is straightforward to show that for any integer n ≥ 0, BYn = Yn+1 and
Yn = BnY0,

where Y0 =





2b 2b 2b
a− b a 2a+ b

a 2a+ b 3a+ 3b



. This generator naturally leads to

the Cassini formula for the Gibonacci numbers.

Theorem 2.6. Let n ≥ 0 be an integer. Then

b
(

Gn+1Gn+3 −G2
n+2

)

= (−1)nb
(

b2 − ab− a2
)

.

Proof. For n = 0, the result is straightforward.
Now, let n ≥ 1 be an integer. Since Yn = BnY0, we have

det Yn = (detB)n det Y0.

By substituting det Yn = 2b
(

Gn+1Gn+3 −G2
n+2

)

, detB = −1 and
det Y0 = 2b (b2 − ab− a2), the desired result follows.�

From Theorem 2.6 we obtain the well-known Cassini formulas for Fi-
bonacci numbers and Lucas numbers.

Corollary 2.7. Let n ≥ 0 be an integer. Then Fn+1Fn+3 − F 2
n+2 = (−1)n

and Ln+1Ln+3 − L2
n+2 = 5(−1)n+1.
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