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Abstract

The Bell distribution is a simple discrete distribution with one pa-

rameter. It has interesting properties, such as being a part of the

one-parameter exponential family of distributions and being infinitely

divisible. Moreover, the Bell distribution has a variance larger than

the mean, indicating that it may be suitable for overdispersed data.

With this performance, the Bell distribution is more useful than the

Poisson distribution, which is the most popular model for count data.

Inflated models have become quite popular in the recent applied sta-

tistical literature. In many scientific studies, we often experience sit-

uations in which the data consists of a large proportion of zeros and

ones. To model count data with excess zeros and excess ones, this

paper presents a zero-one inflated Bell distribution. Some properties

of the zero-one inflated Bell distribution are also included, such as

the probability mass function, probability generating function, mo-

ment about the origin, mean, and variance. In addition, in this paper,
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we investigate the parameter estimation of the zero-one inflated Bell

distribution by using the maximum likelihood method. Finally, the

insurance dataset is used to show how useful the zero-one inflated

Bell distribution is in real life and to see how it compares to other

well-known distributions in terms of fit.

1 Introduction

Undoubtedly, the one-parameter Poisson distribution is the most popular
model for count data used in practice, mainly because of its simplicity. On
the other hand, a major drawback of this distribution is that its variance
is restricted to be equal to the mean. Empirically, we often find data that
exhibit overdispersion, which is variance larger than the mean, and hence
the one-parameter Poisson distribution may not be suitable in such a case.
For this restriction, the negative binomial distribution and other developed
extended Poisson distributions are introduced with two or three parameters.

The Bell distribution, introduced by Castellares et al. [1], is a simple
discrete distribution with one parameter. It has many interesting properties,
such as:
(i) it is a one-parameter distribution;
(ii) it belongs to the one-parameter exponential family of distributions;
(iii) the Poisson distribution is not nested in the Bell family, but for small
values of the parameter, the Bell distribution approaches the Poisson distri-
bution; and
(iv) it is infinitely divisible.

A discrete random variable X has a Bell distribution with a parameter if
its probability mass function is given by

g (x) =
θxBx exp

(

1− eθ
)

x!
, x = 0, 1, 2, 3, ... (1.1)

where θ > 0 and Bx = 1
e

∑

∞

k=0
kx

k!
are the Bell numbers starting with B0 =

B1 = 1. The mean and variance of the Bell distribution are E(X) = θ exp(θ)
and Var(X) = θ (1 + θ) exp(θ), respectively.

Moreover, the Bell distribution stands out as a parsimonious model for
handling overdispersion, requiring no additional parameters compared to
other two- and three-parameter distributions. This simplicity enhances its
appeal for modeling overdispersed data, making it both efficient and effec-
tive [2]. Another characteristic of overdispersed data may result from some
occurrence, including excess zeros or both excess zero and one frequencies



Zero-One Inflated Bell Distribution... 627

simultaneously. The fitting model for high zero frequency is called a zero-
inflated model. The models have been developed to address this issue, in
which the zero-inflated Poisson distribution is introduced by Lambert [3].
Lemonte et al. [2] proposed the zero-inflated Bell distribution.

Nevertheless, the model for fitting excess zeros and ones data is called
a zero-one inflated model. Alshkaki [4] extended the zero-inflated power
series distributions by introducing zero-one inflated models, which inflate
both zero and one frequencies. This innovation broadens the scope of zero-
inflated models, providing a more flexible framework. The zero-one inflated
Poisson distribution and the zero-one inflated negative binomial distribution
were proposed by Alshkaki [5] and Alshkaki [6], respectively. Furthermore,
there are many related articles, such as zero-one inflated Poisson-Sushila
[7], zero-one inflated negative binomial-Sushila distributions [8], zero-one
inflated negative binomial-beta exponential distribution [9], and zero-one-
inflated Poisson-Lindley distribution [10].

In insurance data, zero-inflated models and zero-one-inflated models are
used to address datasets with an excess of zeros—a common scenario for claim
data where many policyholders might not file any claims, which is common
in areas like auto or health insurance. Zero-one inflated models extend zero-
inflated models by also accounting for an overabundance of ones in the data,
helpful when both zero and one counts are frequent. This two-part inflation
can better show the range of outcomes in some insurance situations, like when
policies have a lot of small claims (count of one) and a lot of zero claims.

As mentioned above, the Bell distribution is the one-parameter distribu-
tion that has both efficient and effective handling of overdispersion [2]. The
goal of this work is to come up with a new model, the zero-one inflated Bell
distribution, that builds on the Bell distribution and the zero-inflated Bell
distribution. It has only three parameters. Some properties of the zero-one
inflated Bell distribution are also derived. For parameter estimation, the
maximum likelihood estimators are obtained. The performance of the pro-
posed distribution in fitting insurance datasets with a large number of zeros
and ones compared to a zero-to-one inflated Poisson distribution is shown in
the application section.

2 Zero-One Inflated Bell Distribution

Let Y be a random variable from a zero-one inflated Bell distribution with pa-
rameters θ > 0, 0 < π0 < 1, and 0 < π1 < 1, written as Y ∼ ZOIB(θ, π0, π1).
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Theorem 2.1. The probability mass function (pmf) of Y is given by

f (y) =











π0 + (1− π0 − π1) exp
(

1− eθ
)

, y = 0
π1 + (1− π0 − π1) θ exp

(

1− eθ
)

, y = 1

(1− π0 − π1)
θyBy exp(1−eθ)

y!
, y ≥ 2

(2.2)

where θ > 0, 0 < π0 < 1, and 0 < π1 < 1.

Proof. The zero–one inflated model is an extra proportion added to the
proportion of zero, and then the pmf of zero-one inflated model is defined by

f (y) =







π0 + (1− π0 − π1) g (0) y = 0
π1 + (1− π0 − π1) g (1) y = 1
(1− π0 − π1) g (y) y = 2, 3, ...

Let Y be a random variable from the Bell distribution with parameters
θ > 0. It will be shown that g(0) = exp

(

1− eθ
)

, g(1) = θ exp
(

1− eθ
)

, and

g(y) =
θyBy exp(1−eθ)

y!
.

Corollary 2.2. The Y ∼ ZOIB (θ, π0, π1) reduces to the Bell distribution if
π0 = 0 and π1 = 0.

Corollary 2.3. The Y ∼ ZOIB (θ, π0, π1) reduces to the one inflated Bell
distribution if π0 = 0.

Corollary 2.4. The Y ∼ ZOIB (θ, π0, π1) reduces to the zero inflated Bell
distribution as proposed by Lemonte et al. [2] if π1 = 0.

3 Some Properties

This section delineates fundamental statistical characteristics of this distri-
bution; namely, the probability generating function, the rth moment around
the origin, as well as the mean and the variance.

3.1 Probability generating function

The probability generating function is given by

GY (s) = π0 + π1s+ (1− π0 − π1) exp
(

esθ − eθ
)
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3.2 Moment

The rth moment about origin of Y ∼ ZOIB(θ, π0, π1) is given by

E (Y r) = π1 + (1− π0 − π1) exp
(

1− eθ
)

∞
∑

y=1

yrθyBy

y!
(3.3)

where θ > 0, 0 < π0 < 1, and 0 < π1 < 1.

3.3 Mean

The first moment about the origin of Y ∼ ZOIB (θ, π0, π1) is the mean of
Y ∼ ZOIB (θ, π0, π1);

E (Y ) = π1 + (1− π0 − π1) θ exp(θ)

Proof. The first moment about origin of Y ∼ ZOIB (θ, π0, π1) in (3.3)
will be

E (Y ) = π1 + (1− π0 − π1) exp
(

1− eθ
)

∞
∑

y=1

yθyBy

y!

and exp
(

1− eθ
)
∑

∞

y=1

yθyBy

y!
= θeθ consists of the mean of the Bell distribu-

tion.

3.4 Variance

The variance of Y ∼ ZOIB (θ, π0, π1) is

V ar(Y ) = π1 + (1− π0 − π1) θ exp(θ) (θ exp(θ) + θ + 1)

− [π1 + (1− π0 − π1) θ exp(θ)]
2
.

Proof. The second moment about origin of Y ∼ ZOIB (θ, π0, π1) in (3.3)
will be

E
(

Y 2
)

−E (Y )2 = π1 + (1− π0 − π1)

∞
∑

y=1

y2e1−eθθyBy

y!

− [π1 + (1− π0 − π1) θ exp(θ)]
2

= π1 + (1− π0 − π1) θe
θ
(

θeθ + θ + 1
)

− [π1 + (1− π0 − π1) θ exp(θ)]
2

and exp
(

1− eθ
)
∑

∞

y=1

y2θyBy

y!
= θeθ

(

θeθ + θ + 1
)

consists of the second mo-
ment of the Bell distribution.
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4 Parameter Estimation

The maximum likelihood method is considered to estimate the parameters
for the zero-one inflated Bell (ZOIB) distribution. The likelihood function of
ZOIB(θ, π0, π1) is given by

L (θ, π0, π1) =

n
∏

i=1

[

(

π0 + (1− π0 − π1) exp
(

1− eθ
))ai

]

×

[

(

π1 + (1− π0 − π1) θ exp
(

1− eθ
))bi

]

×

[(

(1− π0 − π1)
θyiByi exp

(

1− eθ
)

yi!

)1−ai−bi
]

(4.4)

where ai =

{

1, if yi = 0

0, if yi 6= 0
and bi =

{

1, if yi = 1

0, if yi 6= 1
, with the corresponding

log-likelihood function:

LL (θ, π0, π1) =

(

n
∑

i=1

ai

)

log
(

π0 + (1− π0 − π1) exp
(

1− eθ
))

+

(

n
∑

i=1

bi

)

log
(

π1 + (1− π0 − π1) θ exp
(

1− eθ
))

+

n
∑

i=1

(1− ai − bi) log (1− π0 − π1)

+

n
∑

i=1

(1− ai − bi) yi log (θ) +

n
∑

i=1

(1− ai − bi) log (Byi)

+
n
∑

i=1

(1− ai − bi)
(

1− eθ
)

−

n
∑

i=1

(1− ai − bi) log (yi!)

Here, let n0 =
∑n

i=1 ai be the number of zeros, n1 =
∑n

i=1 bi be the
number of ones, and ci = 1− ai − bi.
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LL (θ, π0, π1) = n0 log
(

π0 + (1− π0 − π1) exp
(

1− eθ
))

+ n1 log
(

π1 + (1− π0 − π1) θ exp
(

1− eθ
))

+ (n− n0 − n1) log (1− π0 − π1) +

n
∑

i=1

ciyi log (θ)

+
n
∑

i=1

ci log (Byi) + (n− n0 − n1)
(

1− eθ
)

−

n
∑

i=1

ci log (yi!)

The optimal value of the parameters can be obtained by the first partial
derivatives of the log-likelihood function with respect to θ, π0, and π1. Then,
it gives rise to the following equations:

∂LL

∂θ
=

n0 (1− π0 − π1) exp
(

1− eθ
) (

−eθ
)

π1 + (1− π0 − π1) exp (1− eθ)
+

n
∑

i=1

ciyi

θ
− (n− n0 − n1) e

θ

+
n1

(

π1 + (1− π0 − π1) exp
(

1− eθ
)

+ (1− π0 − π1) θ exp
(

1− eθ
) (

−eθ
))

π1 + (1− π0 − π1) θ exp (1− eθ)

∂LL

∂π0

=
n0

(

1− exp
(

1− eθ
))

π0 + exp (1− eθ) (1− π0 − π1)

+
n1

(

1− θ exp
(

1− eθ
))

π0 + θ exp (1− eθ) (1− π0 − π1)
−

(

n− n0 + n1

1− π0 − π1

)

∂LL

∂π1

= −
n0 exp

(

1− eθ
)

π0 + exp (1− eθ) (1− π0 − π1)

−
n1 exp

(

1− eθ
)

π0 + θ exp (1− eθ) (1− π0 − π1)
−

(

n− n0 − n1

1− π0 − π1

)

.

The Newton-Raphson method, a numerical process, was employed in this
work to determine the maximum likelihood estimates of θ̂, π̂0 and π̂1 using
the ‘countDM’ package in the R program [11].

5 Application to Real Dataset

In this section, two different sets of data will be used to show the perfor-
mances of the zero-one inflated Bell distribution by comparing it to the zero
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inflated Poisson (ZIP), zero-one inflated Poisson (ZOIP), and zero inflated
Bell (ZIB) distributions. The maximum likelihood method provides param-
eter estimations. The minus log-likelihood (-log L), Akaike information cri-
terion (AIC), and Bayesian information criterion (BIC) are used for model
selection and evaluation [12].

5.1 Dataset 1: the claim counts from the motor insur-
ance

The dataset is the number of claims from a motor insurance. The data
includes 2,812 complete records from policyholders who remained with the
company over the past year. The dataset was sourced from the SAS En-
terprise Miner database [13]. The frequency data is presented in Table 1.
Table 2 presents the estimated parameters obtained through the maximum
likelihood method for the ZIP, ZOIP, ZIB, and ZOIB distributions pertain-
ing to dataset 1. The results, including minus log-likelihood, AIC, and BIC,
indicate that the ZOIB distribution outperforms the other three models.

Table 1: The number of claims and frequency from a motor insurance.
number of claims 0 1 2 3 4 5

frequency 1706 351 408 268 74 5

Table 2: The maximum likelihood estimator of distributions and some criteria
of model performance for dataset 1.

ZIP ZOIP ZIB ZOIB

λ̂ = 1.6899
π̂0 = 0.5177

λ̂ = 2.5708
π̂0 = 0.6067
π̂1 = 0.1248

θ̂ = 0.6458
π̂0 = 0.3429

θ̂ = 0.4785
π̂0 = 0.6102
π̂1 = 0.1251

-log L 3347.59 3706.06 3406.86 3340.97
AIC 6699.19 7418.12 6817.72 6687.94
BIC 6711.06 7435.95 6829.60 6705.76

5.2 Dataset 2: automobile insurance Zaire 1974

The data show the number of automobile third-party insurance liability port-
folios in Zaire in 1974. Denuit [14] used them, and the DDPM package in
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the R programming language now makes them available [15]. Table 3 pro-
vides the frequency data. Again, ZIP, ZOIP, ZIB, and ZOIB distributions
have been fitted to data by the maximum likelihood method. Based on the
results, there is sufficient statistical evidence that the ZOIB distribution fits
the data quite well (Table 4).

Table 3: The number of automobile insurance third-party liability portfolios.
number of portfolios 0 1 2 3 4 5

frequency 3719 232 38 7 3 1

Table 4: The MLE estimator of distributions and some criteria of model
performance for dataset 2.

ZIP ZOIP ZIB ZOIB

λ̂ = 0.4317
π̂0 = 0.7996

λ̂ = 0.8522
π̂0 = 0.9049
π̂1 = 0.0368

θ̂ = 0.2010
π̂0 = 0.6480

θ̂ = 0.3129
π̂0 = 0.9298
π̂1 = 0.0580

-log L 1187.78 1183.92 1185.53 1183.58
AIC 2379.56 2373.83 2375.05 2373.15
BIC 2392.15 2392.72 2387.65 2392.04

6 Conclusion

In this paper, we introduced the zero-one inflated Bell distribution which
adds heterogeneity to the Bell distribution for count data by adding extra
zeros and ones. We demonstrated some statistical properties of the ZOIB
distribution, including the probability mass function, probability generating
function, moment, mean, and variance. We also presented the sub-models for
the ZOIB distribution. We used the maximum likelihood method to estimate
the parameters of the ZOIB distribution. This distribution was implemented
on two real datasets from the insurance field, which illustrated the usefulness
and compared to the related distributions, such as the zero inflated Poisson,
zero-one inflated Poisson and zero inflated Bell distributions. The results for
the fitting performance of various distributions, assessed through the minus
log-likelihood, Akaike information criterion and Bayesian information crite-
rion, indicate that the ZOIB distribution demonstrates notable flexibility.
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We are hopeful that the proposed distribution may attract wider applica-
tions in analyzing count data that have an excess of zeros and ones.
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