International Journal of Mathematics and Computer Science Volume **20**, Issue no. 2, (2025), 555–561 DOI: https://doi.org/10.69793/ijmcs/02.2025/sanaa

On Topological Semi-Manifolds and their applications

Sanaa Hamdi Jasem, Bushra Jaralla Tawfeeq, Hula M. Salih

Department of Mathematics College of Education Mustansiriyah University Baghdad, Iraq

email: hamdi_sanaa@uomustansiriyah.edu.iq, bush.jar@uomustansiriyah.edu.iq, h1g2b3m4m5@uomustansiriyah.edu.iq

(Received January 11, 2025, Revised February 12, 2025, Accepted February 15, 2025, Published February 19, 2025)

Abstract

In this paper, we provide a topological semi-manifold and its differential structure, its tangent space, and the definition of a topological semi-manifold with boundary to find a way to draw a map of the earth with high accuracy.

1 Introduction

The topic of manifolds has been raised since the seventies of the last century. Brickell [1] and Guillemin [2] defined a manifold as a topological space that achieves several properties; namely, that the space must be Hausdorff and local Euclidean of dimension n, and that this space must have a countable base. In 2022, Jasem and Tawfiq [3] presented a new type of manifolds called Bc manifold. As for the topic of continuous functions and equivalence functions, many researchers have presented studies on this type of functions,

Key words and phrases: Topological semi-manifold, topological manifold, topological semi-manifold with boundary.

AMS (MOS) Subject Classifications:57Nxx.

ISSN 1814-0432, 2025, https://future-in-tech.net

including Jasem and Tawfiq [4] who presented a new type of continuous functions. In this research, we present a new type of manifolds, called Topological semi-manifolds followed by topological semi-manifolds with boundaries with the aim of using them in drawing maps more accurately by converting each three-dimensional shape into a two-dimensional Euclidean space.

2 Topological semi-manifolds

2.1 Definition A topological space \mathcal{M}^m is said to be a topological semimanifold of dimension m iff the following conditions are met:

1. \mathcal{M}^m is semi-Hausdorff

2. For all $p \in \mathcal{M}^m$ there is a semi-open neighborhood u such that $p \in u \subseteq \mathcal{M}^m$ and it is semi-homeomorphic to a semi-open set ν in \mathcal{R}^m 3. \mathcal{M}^m has a countable base.

If $\eta : u \to \nu$ is a semi-homomorphism, then (u,η) is called a coordinate neighborhood on the semi-manifold \mathcal{M}^m at a point $p, \eta(p) = (\eta_1(p), \ldots, \eta_m(p)), (\eta_1, \ldots, \eta_m)$ is called coordinate function on u and $(\eta_1(p), \ldots, \eta_m(p))$ is called a local coordinate.

2.2 Definition Let \mathcal{M}^m be a topological semi-manifold of dimension m and let $\eta : u \to \nu$ be a semi-homeomorphism of a semi-open subset $u \subseteq \mathcal{M}^m$ onto the semi-open subset ν in \mathcal{R}^m . Then η is called a chart of \mathcal{M}^m .

2.3 Definition The differentiable structure \mathbb{Q} of class C^k on a topological semi-manifold \mathcal{M}^m is the set of all coordinate neighborhoods (u_i, η_i) on \mathcal{M}^m ; i.e.,

1. $\bigcup u_i = \mathcal{M}^m$ 2. If $(u_i, \eta_i), (u_j, \eta_j) \in \mathbb{Q}$ such that $u_i \cap u_j \neq \emptyset$, then the function $\eta_i \circ \eta_j^{-1} \colon \eta_j(u_i \cap u_j) \to R^m$ is differentiable of class C^k 3. $\mathbb{Q} = \{(u_i, \eta_i)\}$ is maximal relative to condition 2. If $\eta_i \circ \eta_j^{-1}$ are of class C^∞ for all i, j, then we get the differentiable structure of class C^∞ .

2.4 Definition The topological semi-manifold with differentiable structure \mathbb{Q} of class C^k is called a smooth semi-manifold iff \mathbb{Q} is of class C^{∞}

2.5 Theorem Every manifold is a semi-manifold.

Proof. Let A^m be a manifold. Then it is a Hausdorff space. That is, for all $x, y \in A^m$ there exist two disjoint open sets u, ν such that $x \in u, y \in \nu$. Since every open set is semi-open, u, ν are semi-open and A^m is a semi-Hausdorff space.

Every point in A^m has a neighborhood which is homeomorphic to an open subset of R^m . Since every continuous function is semi-continuous, every point in A^m has a neighborhood which is semi-homeomorphic to a semi-open subset of R^m and so A^m is semi-manifold.

2.6 Remark The converse of the above theorem is not necessarily true. That is, not every semi-manifold is a manifold as the following example shows:

2.7 Example Suppose $a, b \in R$. Let $A = \{x \in R : a < x \leq b\}$. Then A is a semi-manifold topological space since every element in A has a semi-open set which is homeomorphic to semi-open subset of R and A is semi-Hausdorff and has a countable base, However, it is not a manifold because we cannot find an open neighborhood for the element b.

2.8 Lemma There is a neighborhood v of a and w of $\beta(a)$ such that $\beta: v \longrightarrow w$ is invertible with a smooth inverse.

2.9. Theorem Let u be semi-open in \mathbb{R}^{n+m} and $\gamma : u \longrightarrow \mathbb{R}^m$ be a C^{∞} function. Suppose that for each $a \in \gamma^{-1}(c)$ such that $c \in \mathbb{R}^m$ and the derivative $D\gamma_a : \mathbb{R}^{m+n} \longrightarrow \mathbb{R}^m$ is surjective. Then $\gamma^{-1}(c)$ has the structure of an *n*-dimensional semi-manifold which is semi-Hausdorff and has a countable base of a semi-open set.

Proof. Suppose that the derivative γ at a is $D\gamma_a: \mathbb{R}^{m+n} \longrightarrow \mathbb{R}^m$ such that $\gamma(a) + D\gamma_a(h) + \mathcal{R}(a,h)$ where $\mathcal{R}(a,h)/\|h\| \longrightarrow 0$ as $h \longrightarrow 0$ $\gamma(x_1,\ldots,x_{n+m}) = (\gamma_1,\ldots,\gamma_m)$ $\frac{\partial\gamma_i}{\partial x_i}(a) \ 1 \le i \le m, \ 1 \le j \le n+m$ Now we get that this is surjective. By rearranging x_1,\ldots,x_{m+n} , we may assume $\frac{\partial\gamma_i}{\partial x_i}(a), \ 1 \le i \le m, \ 1 \le j \le m$ is invertible. Now, define $\beta: v \longrightarrow \mathbb{R}^{n+m}$ such that $\beta(x_1,\ldots,x_{n+m}) = (\gamma_1,\ldots,\gamma_m,x_{m+1},\ldots,x_{n+m})\ldots(1)$ β_a is invertible. By lemma 2.8 and (1), we show that β maps $v \cap \gamma^{-1}(c)$ to

the intersection of w with $\{x \in \mathbb{R}^{n+m} : x_i = c_i, 1 \le i \le m\}$.

This is a coordinate chart ϕ . If we take two charts ϕ_{α_1} , ϕ_{α_2} , then $\phi_{\alpha_1} \circ \phi_{\alpha_2}^{-1}$ is a map from a semi-open set in $\{x \in \mathbb{R}^{n+m} : x_i = c_1, 1 \leq i \leq m\}$ to another on which is the restriction of $\beta_{\alpha_1}(\beta_{\alpha_2}^{-1})$ of a semi-open in \mathbb{R}^{n+m} to itself, there is an invertible map C^{∞} in the induced topology from \mathbb{R}^{n+m} , β_{α} is a semi-homeomorphism.

So semi open in the semi-manifold is the same as semi open in the induced topology, since \mathbb{R}^{n+m} is semi-Hausdorff with a countable basis of a semi-open set and so is $\gamma^{-1}(c)$.

2.10 Definition Let \mathcal{M}^m and \mathbb{N}^m be smooth semi-manifolds. Then $f : \mathcal{M}^m \longrightarrow \mathbb{N}^m$ is called a semi-diffeomorphism iff f is a semi-homeomorphism and both f and f^{-1} are differentiable functions of class C^{∞} . In this case, we call \mathcal{M}^m and \mathbb{N}^m diffeomorphic.

2.11 Example The function $\gamma : R \longrightarrow R$ such that $\gamma(x) = x$ is a semi-homeomorphism since γ , γ^{-1} are differentiable functions of class C^{∞} .

2.12 Definition Let $\mathcal{M} \subset \mathbb{R}^k$ be a smooth semi-manifold and let $x \in \mathcal{M}$ be any point in \mathcal{M} . Since \mathcal{M} is semi-manifold, there is a parametrization $\gamma : u \longrightarrow W \cap \mathcal{M}$ where u is a semi-open subset of \mathbb{R}^k if $a \in u$ with γ (u) = x, then $D\gamma_a : \mathbb{R}^m \longrightarrow \mathbb{R}^k$ is the derivative of γ at a.

2.13 Definition The tangent of a semi-manifold \mathcal{M} at a point x is defined to be the image $(D\gamma_a(\mathbb{R}^m))$ of γ_a and is denoted by $T\mathcal{M}_x$; that is, $D\gamma_a(\mathbb{R}^m) = T\mathcal{M}_x$.

2.14 Theorem Let \mathcal{M} be a smooth semi-manifold. Then for all $x \in \mathcal{M}$ the dimension of $T\mathcal{M}_x$ is equal to the dimension of \mathcal{M} .

Proof. Let *m* be the dimension of the semi-manifold \mathcal{M} and let $x \in \mathcal{M} \subset \mathbb{R}^k$. Choose a neighborhood *u* of a point *x* in \mathcal{M} . Let $\beta : u \longrightarrow \beta(u) \subset \mathbb{R}^m$ such that β is a semi-diffeomorphism. Then $\beta^{-1} : \beta(u) \longrightarrow \mathbb{R}^k D\beta^{-1}$ is a linear map from a subset of \mathbb{R}^m into \mathbb{R}^k . As a result, dim $(T\mathcal{M}_x)$ is at most *m*.

 $\beta \circ \beta^{-1}$: $R^m \longrightarrow R^m$ is the identity, by the chain rule. $\Rightarrow \mathrm{Id} = D_{\beta(x)} (\beta \circ \beta^{-1}) = (D_x \beta) \circ (D_{\beta(x)} \beta^{-1}) \Rightarrow$ the rank of $D_{\beta(x)} \beta^{-1}$ cannot be less than rank $\mathrm{Id} = m$. Consequently, $\dim(T\mathcal{M}_x) = \dim(\mathcal{M})$. (Note that for all $x, y \in \mathcal{M}$ such that $x \neq y$, we have $T\mathcal{M}_x \neq T\mathcal{M}_y$).

558

3 Semi-manifold with a boundary

3.1 Definition A subset $\mathcal{M} \subset \mathbb{R}^k$ is an *n*-dimensional smooth semi-manifold with boundary if $\forall x \in \mathcal{M}$ there is a semi-open neighborhood *u* of *x* which is semi-diffeomorphic to a semi-open set $\nu \subseteq \mathbb{R}^n_+$. The boundary of \mathcal{M} , denoted by $b(\mathcal{M})$, consists of all points that are mapped to $b(\mathbb{R}^n_+) \cong \mathbb{R}^{n-1}$ under these diffeomorphisms.

Note that if \mathcal{M} is an *n*-dimensional semi-manifold, then $b(\mathcal{M})$ is a smooth (n-1)-semi-manifold by just taking the restrictions of the charts to each boundary component and noticing that they are semi-diffeomorphisms between

 $b(\mathcal{M})$ and $(bR_+^n) \cong R^{n-1}$.

3.2 Remark $b(\mathcal{M})$ is a smooth semi-manifold without boundary; i.e., $b^2(\mathcal{M}) = b(b(\mathcal{M})) = \varphi$.

3.3 Example Let $A = \{(x, y) \in R : x^2 + y^2 \le 1\}$ be a semi-manifold with boundary. Then $b(A) = \{(x, y) \in R : x^2 + y^2 = 1\}$

Since $b(\mathcal{M})$ is an (n-1)-dimensional semi-manifold, for each boundary point $x \in b(\mathcal{M})$, there is a neighborhood $u \subset \mathcal{M}$ and a semi-diffeomorphism $\lambda : u \longrightarrow v \bigcap R_+^n$ where $v \subset R^n$ is semi-open, λ^{-1} is defined on $v \bigcap R_+^n$ and is semi-diffeomorphism. Thus, there exists a semi-open set $v' \subseteq R^n$ and a smooth map $\psi : v' \longrightarrow R^k$ such that, $\psi / v \bigcap R_+^n = \lambda^{-1}$. From this, we define the tangent space:

3.4 Definition For a boundary point $x \in b(\mathcal{M})$, the tangent space to \mathcal{M} at x is the image of the differential of ψ ; that is, $T_x\mathcal{M} = \{D_{\lambda(x)}\psi(y) : y \in v'\}$.

3.5 Definition A map $f : \mathcal{M} \to \mathbb{N}$ between smooth semi-manifolds with boundary is said to be smooth at a point $x \in \mathcal{M}$ in the usual way if $x \in b(\mathcal{M})$. f is smooth at x if for every choice of semi-open sets $x \in \square \subset \mathcal{M}$ and $f(x) \in v \subset \mathbb{N}$ and diffeomorphisms $\lambda : u \longrightarrow \lambda(u) \subset R^m$ and $\mu : v \longrightarrow \mu(v) \subset R^n$ there are extensions $\tilde{\lambda}^{-1}$ and $\tilde{\mu}$ of λ^{-1} and μ such that the composition: $\tilde{\mu} \circ f \circ \tilde{\lambda}^{-1} : W \subset R^m \longrightarrow Y \subset R^n$ on some neighborhoods $x \in W$, $f(x) \in Y$ is smooth.

3.6 Example Let $E = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq a^2\}$ such that $a \in \mathbb{R}_+$. We verify that E is smooth semi-manifold with boundary:

E is a Hausdorff space, every point in E has a semi-open set which is semihomeomorphic to a semi-open subset in \mathbb{R}^2 .

$$u_{1} = \{(x, y, z) \in E : z \geq 0\}, u_{2} = \{(x, y, z) \in E : z \leq 0\}$$
$$u_{3} = \{(x, y, z) \in E : y \geq 0\}, u_{4} = \{(x, y, z) \in E : y \leq 0\}$$
$$u_{5} = \{(x, y, z) \in E : x \geq 0\}, u_{6} = \{(x, y, z) \in E : x \leq 0\}$$

Let $v_1 = v_2 = \{(x, y) \in R^2 : x^2 + y^2 \le a^2\}$ $v_3 = v_4 = \{(x, z) \in R^2 : x^2 + z^2 \le a^2\}$ $v_5 = v_6 = \{(x, z) \in R^2 : x^2 + z^2 \le a^2\}$. v_i with $1 \le i \le 6$ are semi-open subsets in R^2 . Let $\eta_1 : u_1 \longrightarrow v_1; \eta_1(x, y, z) = [x, y], \quad \eta_2 : u_2 \longrightarrow v_2; \eta_2(x, y, z) = [x, y]$ [x, y]

$$\eta_3: u_3 \longrightarrow \upsilon_3; \eta_3(x, y, z) = [x, z], \quad \eta_4: u_4 \longrightarrow \upsilon_4; \eta_4(x, y, z) = [x, z]$$
$$\eta_5: u_5 \longrightarrow \upsilon_5; \eta_5(x, y, z) = [y, z], \quad \eta_6: u_6 \longrightarrow \upsilon_6; \eta_6(x, y, z) = [y, z]$$

. η_i with $1 \leq i \leq 6$ are semi-homeomorphic. Now, let $p \in E$. Then p = (x, y, z) such that $x^2 + y^2 + z^2 \leq a^2$. Either $x \neq 0, y \neq 0$, or $z \neq 0$. Let $x \neq 0$. If $x \geq 0$, then $p \in u_5$. If $x \leq 0$, then $p \in u_6$. Similarly, each $p \in E$ implies that there exist $u_i, 1 \leq i \leq 6$ such that $p \in u_i$ which is semi-homeomorphic to v_i in \mathbb{R}^2

Now, to show that E has a countable base, let ω be the collection of all spheres whose centers are rational numbers. Thus ω is a countable base. Let $\overline{\omega} = \{w \cap E : w \in \omega\}$. Then $\overline{\omega}$ is a countable basis for E.

Let $\mathbb{Q} = \{(u_1, \eta_1), (u_2, \eta_2), \dots, (u_6, \eta_6)\}$. The collection $u_i ; 1 \le i \le 6$ is a cover of E; that is, $\bigcup_{i=1}^6 u_i = E$. Choose $(u_1, \eta_1), (u_5, \eta_1)$ where $\eta_1 : u_1 \longrightarrow v_1$ with $\eta_1(x, y, z) = [x, y], \eta_5 : u_5 \longrightarrow v_5$ with $\eta_5(x, y, z) = [y, z], u_1 \cap u_5 = \{(x, y, z) \in E : z \ge 0, x \ge 0\}, \eta_5(u_1 \cap u_5 = \{(x, z) \in R^2 : z \ge 0\}.$ To prove $\eta_1^{\circ} \eta_5^{-1} : \eta_5(u_1 \cap u_5) \to R^2$ is differentiable. Let $(y, z) \in \eta_5(u_1 \cap u_5) \to \eta_1^{\circ} \eta_5^{-1}(y, z) = \eta_1 \left(\eta_5^{-1}(y, z)\right) = \eta_1(\sqrt{a^2 - y^2 - z^2}, y_i) = [\sqrt{a^2 - y^2 - z^2}, y_i]$ which is differentiable of class C^{∞} .

We conclude from this that E is a semi-smooth manifold with boundary. Now, if we use (3.2) from which we conclude that b(E) is also smooth semimanifold $b(E) = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = a^2\}$ and this represents the earth whose center is (0, 0, 0). That is, it is a smooth semi-manifold. So, the map of the earth can be drawn accurately by transferring each point on the surface of the earth to a point on the Euclidean space with dimension 2 by using the homeomorphism function.

560

References

- [1] F. Brickell, R. S. Clark, Differentiable manifolds, 1970.
- [2] V. Guillemin, A. Pollack, Differential Topology, 1974.
- [3] S. H. Jasem, B. J. Tawfeeq, New types of totally continuous mappings in topological space, Iraqi Journal of Science, Special Issue, (2020), 134– 139.
- [4] S. H. Jasem, B. J. Tawfeeq, New kind of Topological Manifold, Journal of Physics: Conference Series, 2322: 012040, 3rd International Conference on Mathematics and Applied Science, (2022).