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Abstract

In this paper, we provide a topological semi-manifold and its differ-

ential structure, its tangent space, and the definition of a topological

semi-manifold with boundary to find a way to draw a map of the earth

with high accuracy.

1 Introduction

The topic of manifolds has been raised since the seventies of the last cen-
tury. Brickell [1] and Guillemin [2] defined a manifold as a topological space
that achieves several properties; namely, that the space must be Hausdorff
and local Euclidean of dimension n, and that this space must have a count-
able base. In 2022, Jasem and Tawfiq [3] presented a new type of manifolds
called Bc manifold. As for the topic of continuous functions and equivalence
functions, many researchers have presented studies on this type of functions,
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including Jasem and Tawfiq [4] who presented a new type of continuous func-
tions. In this research, we present a new type of manifolds, called Topological
semi-manifolds followed by topological semi-manifolds with boundaries with
the aim of using them in drawing maps more accurately by converting each
three-dimensional shape into a two-dimensional Euclidean space.

2 Topological semi-manifolds

2.1 Definition A topological space Mm is said to be a topological semi-
manifold of dimension m iff the following conditions are met:
1. Mm is semi-Hausdorff
2. For all p ∈ Mm there is a semi-open neighborhood u such that p ∈ u ⊆
Mm and it is semi-homeomorphic to a semi-open set ν in Rm

3. Mm has a countable base.
If η : u→ ν is a semi-homomorphism, then (u,η) is called a coordinate neigh-
borhood on the semi-manifold Mm at a point p, η(p) = (η1(p), . . . . . . , ηm(p)),
(η1, ....., ηm) is called coordinate function on u and (η1(p), . . . . . . , ηm(p)) is
called a local coordinate.

2.2 Definition Let Mm be a topological semi-manifold of dimension m
and let η : u→ ν be a semi-homeomorphism of a semi-open subset u ⊆ Mm

onto the semi-open subset ν in Rm. Then η is called a chart of Mm.

2.3 Definition The differentiable structure Q of class Ck on a topological
semi-manifold Mm is the set of all coordinate neighborhoods (ui,ηi) on Mm;
i.e.,
1.

⋃
ui=Mm

2. If (ui, ηi), (uj,ηj)∈ Q such that ui ∩ uj 6= ∅, then the function
ηi

◦η−1
j : ηj(ui ∩ uj) → Rm is differentiable of class Ck

3. Q= {(ui,ηi)} is maximal relative to condition 2.
If ηi

◦η−1
j are of class C∞ for all i, j, then we get the differentiable structure

of class C∞.

2.4 Definition The topological semi-manifold with differentiable structure
Q of class Ck is called a smooth semi-manifold iff Q is of class C∞

2.5 Theorem Every manifold is a semi-manifold.
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Proof. Let Am be a manifold. Then it is a Hausdorff space. That is,
for all x, y ∈ Am there exist two disjoint open sets u,ν such that x ∈ u, y ∈ ν.
Since every open set is semi-open, u,ν are semi-open and Am is a semi-
Hausdorff space.
Every point in Am has a neighborhood which is homeomorphic to an open
subset of Rm. Since every continuous function is semi-continuous, every point
in Am has a neighborhood which is semi-homeomorphic to a semi-open subset
of Rm and so Amis semi-manifold.

2.6 Remark The converse of the above theorem is not necessarily true.
That is, not every semi-manifold is a manifold as the following example
shows:

2.7 Example Suppose a, b ∈ R. Let A = {x ∈ R : a < x ≤ b}. Then A is
a semi-manifold topological space since every element in A has a semi-open
set which is homeomorphic to semi-open subset of R and A is semi-Hausdorff
and has a countable base, However, it is not a manifold because we cannot
find an open neighborhood for the element b.

2.8 Lemma There is a neighborhood υ of a and w of β(a) such that
β : υ −→ w is invertible with a smooth inverse.

2.9. Theorem Let u be semi-open in Rn+m and γ : u −→ Rm be
a C∞ function. Suppose that for each a ∈ γ−1(c) such that c ∈ Rm and
the derivative Dγa : Rm+n −→ Rm is surjective. Then γ−1(c) has the
structure of an n-dimensional semi-manifold which is semi-Hausdorff and
has a countable base of a semi-open set .

Proof. Suppose that the derivative γ at a is Dγa : Rm+n −→ Rm

such that γ(a) + Dγa(h) + R(a, h) where R(a, h)/‖h‖ −→ 0 as h −→ 0
γ (x1 . . . . . . ., xn+m) = (γ1, . . . ., γm)
∂γi
∂xi

(a) 1≤ i ≤ m , 1 ≤ j ≤ n +m
Now we get that this is surjective. By rearranging x1, . . . . . . xm+n, we may
assume ∂γi

∂xi

(a), 1≤ i ≤ m , 1 ≤ j ≤ m is invertible. Now, define

β : υ −→ Rn+m such that
β (x1, . . . ., xn+m) = (γ1, . . . .., γm, xm+1, . . . ., xn+m). . . .(1)
βa is invertible. By lemma 2.8 and (1), we show that β maps υ ∩ γ−1(c) to
the intersection of w with {x ∈ Rn+m : xi = ci, 1 ≤ i ≤ m}.
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This is a coordinate chart φ. If we take two charts φα1
, φα2

, then φα1
◦ φ−1

α2

is a map from a semi-open set in {x ∈ Rn+m : xi = c1, 1 ≤ i ≤ m} to
another on which is the restriction of βα1

(β−1
α2

) of a semi-open in Rn+m to
itself, there is an invertible map C∞ in the induced topology from Rn+m, βα
is a semi-homeomorphism.
So semi open in the semi-manifold is the same as semi open in the induced
topology, sinceRn+m is semi-Hausdorff with a countable basis of a semi-open
set and so is γ−1(c) .

2.10 Definition Let Mm and Nm be smooth semi-manifolds. Then f :
Mm −→ Nm is called a semi-diffeomorphism iff f is a semi-homeomorphism
and both f and f−1 are differentiable functions of class C∞. In this case, we
call Mm and Nm diffeomorphic.

2.11 Example The function γ : R −→ R such that γ(x) = x is a
semi-homeomorphism since γ , γ−1 are differentiable functions of class C∞.

2.12 Definition Let M ⊂ Rk be a smooth semi-manifold and let x ∈ M
be any point in M. Since M is semi manifold, there is a parametrization
γ : u −→ W ∩ M where u is a semi-open subset of Rk if a ∈ u with γ
(u) = x, then Dγa : R

m −→ Rk is the derivative of γ at a.

2.13 Definition The tangent of a semi-manifold M at a point x is de-
fined to be the image (Dγa (R

m)) of γa and is denoted by TMx; that is,
Dγa (R

m) = TMx.

2.14 Theorem Let M be a smooth semi-manifold. Then for all x∈ M
the dimension of TMx is equal to the dimension of M.

Proof. Let m be the dimension of the semi-manifold M and let x ∈
M ⊂ Rk. Choose a neighborhood u of a point x in M. Let β : u −→ β(u) ⊂
Rmsuch that β is a semi-diffeomorphism. Then β−1 : β(u) −→ Rk Dβ−1 is a
linear map from a subset of Rm into Rk. As a result, dim(TMx) is at most
m.
β ◦ β−1: Rm −→ Rm is the identity, by the chain rule.
⇒Id=Dβ(x) (β ◦ β−1) = (Dxβ) ◦ (Dβ(x)β

−1)⇒ the rank of Dβ(x)β
−1 cannot

be less than rank Id=m. Consequently, dim(TMx) =dim(M).
(Note that for all x, y∈ M such that x 6= y, we have TMx 6= TMy).
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3 Semi-manifold with a boundary

3.1 Definition A subsetM ⊂ Rk is an n-dimensional smooth semi-manifold
with boundary if ∀x∈ M there is a semi-open neighborhood u of x which
is semi-diffeomorphic to a semi-open set ν ⊆ R+

n. The boundary of M,
denoted by b(M), consists of all points that are mapped to b (R+

n) ∼= Rn−1

under these diffeomorphisms.
Note that if M is an n-dimensional semi-manifold, then b(M) is a smooth
(n − 1)-semi-manifold by just taking the restrictions of the charts to each
boundary component and noticing that they are semi-diffeomorphisms be-
tween
b (M) and (bR+

n) ∼= Rn−1.

3.2 Remark b(M) is a smooth semi-manifold without boundary; i.e.,
b2 (M) = b (b (M)) = ϕ.

3.3 Example Let A = {(x, y) ∈ R : x2+ y2 ≤ 1} be a semi-manifold with
boundary. Then b(A) = {(x, y) ∈ R : x2 + y2 = 1 }
Since b(M) is an (n−1)-dimensional semi-manifold, for each boundary point
x ∈ b(M), there is a neighborhood u ⊂ M and a semi-diffeomorphism
λ : u −→ υ

⋂
Rn

+ where υ ⊂ Rn is semi-open, λ−1 is defined on υ
⋂
Rn

+ and
is semi-diffeomorphism. Thus, there exists a semi-open set υ/ ⊆ Rn and a
smooth map ψ : υ/ −→ Rk such that, ψ / υ

⋂
Rn

+ = λ−1.
From this, we define the tangent space:

3.4 Definition For a boundary point x ∈ b(M), the tangent space to
M at x is the image of the differential of ψ; that is, TxM = {Dλ(x)ψ(y) :
y ∈ υ/}.

3.5 Definition A map f : M→ N between smooth semi-manifolds with
boundary is said to be smooth at a point x ∈ M in the usual way if x ∈ b(M).
f is smooth at x if for every choice of semi-open sets x∈ ⊓ ⊂ M and f(x) ∈
υ⊂ N and diffeomorphisms λ : u −→ λ(u) ⊂ Rm and µ : υ −→ µ(υ) ⊂ Rn

there are extensions λ̃−1 and µ̃ of λ−1and µ such that the composition:
µ̃ o f oλ̃−1 : W ⊂ Rm −→ Y ⊂ Rn on some neighborhoods x ∈ W , f(x) ∈ Y
is smooth.

3.6 Example Let E = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ a2} such that
a ∈ R+. We verify that E is smooth semi-manifold with boundary:
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E is a Hausdorff space, every point in E has a semi-open set which is semi-
homeomorphic to a semi-open subset in R2.

u1 = {(x, y, z) ∈ E : z ≥ 0}, u2 = {(x, y, z) ∈ E : z ≤ 0}

u3 = {(x, y, z) ∈ E : y ≥ 0} , u4 = {(x, y, z) ∈ E : y ≤ 0}

u5 = {(x, y, z) ∈ E : x ≥ 0} , u6 = {(x, y, z) ∈ E : x ≤ 0}

Let υ1 = υ2 = {(x, y) ∈ R2 : x2+y2 ≤ a2} υ3 = υ4 = {(x, z) ∈ R2 : x2 + z2 ≤ a2}
υ5 = υ6 = {(x, z) ∈ R2 : x2 + z2 ≤ a2}. υi with 1≤ i ≤ 6 are semi-open sub-
sets in R2. Let η1 : u1 −→ υ1; η1(x, y, z) = [x, y], η2 : u2 −→ υ2; η2(x, y, z) =
[x, y]

η3 : u3 −→ υ3; η3(x, y, z) = [x, z], η4 : u4 −→ υ4; η4(x, y, z) = [x, z]

η5 : u5 −→ υ5; η5(x, y, z) = [y, z], η6 : u6 −→ υ6; η6(x, y, z) = [y, z]

. ηi with 1≤ i ≤ 6 are semi-homeomorphic. Now, let p ∈ E. Then
p = (x, y, z) such that x2 + y2 + z2 ≤ a2. Either x 6= 0, y 6= 0, or z 6= 0.
Let x 6= 0. If x ≥ 0, then p ∈ u5. If x ≤ 0, then p ∈ u6. Similarly, each
p ∈ E implies that there exist ui, 1 ≤ i ≤ 6 such that p ∈ ui which is semi-
homeomorphic to υi in R

2

Now, to show that E has a countable base, let ω be the collection of all
spheres whose centers are rational numbers. Thus ω is a countable base.
Let ω = {w ∩ E : w ∈ ω}. Then ω is a countable basis for E.
Let Q = {(u1, η1) , (u2, η2) , . . . . . . . (u6, η6)}. The collection ui ; 1 ≤ i ≤ 6
is a cover of E; that is,

⋃6
i=1 ui = E. Choose (u1, η1) , (u5, η1) where η1 :

u1 −→ υ1 with η1(x, y, z) = [x, y], η5 : u5 −→ υ5 with η5(x, y, z) = [y, z],
u1∩u5 = {(x, y, z) ∈ E : z ≥ 0, x ≥ 0},η5(u1∩u5 = {(x, z) ∈ R2 : z ≥ 0}.
To prove η1

◦η−1
5 : η5(u1∩u5) → R2 is differentiable. Let (y, z) ∈ η5(u1∩u5) →

η1
◦η−1

5 (y, z) = η1
(
η−1
5 (y, z)

)
= η1(

√
a2 − y2 − z2,y,z)= [

√
a2 − y2 − z2,y]

which is differentiable of class C∞.
We conclude from this that E is a semi-smooth manifold with boundary.
Now, if we use (3.2) from which we conclude that b(E) is also smooth semi-
manifold b(E) = {(x, y, z) ∈ R3 : x2 + y2 + z2 = a2} and this represents the
earth whose center is (0, 0, 0). That is, it is a smooth semi-manifold. So, the
map of the earth can be drawn accurately by transferring each point on the
surface of the earth to a point on the Euclidean space with dimension 2 by
using the homeomorphism function.
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