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Abstract

We give an upper bound for the modulus of rational functions and

show how it generalizes some well-known inequalities.

1 Introduction

In this paper, we use Tk = {z ∈ C : |z| = k}, D+
k = {z ∈ C : |z| > k}

where k is any positive integer. Let w(z) :=
∏n

j=1(z − aj) and B(z) :=
∏n

j=1

(

1−ajz

z−aj

)

= w∗(z)
w(z)

, where aj ∈ C for j = 1, 2, 3, . . . , n and w∗(z) =

znw
(

1
z

)

. The product B(z) is called Blaschke product when |B(z)| = 1 for
z ∈ T1. Let Pm be the class of all polynomials of degree at most m. We define

Rm,n by Rm,n = Rm,n(a1, a2, . . . , an) :=
{

p(z)
w(z)

: p ∈ Pm and m ≤ n
}

, where
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aj ∈ D+
1 , j = 1, 2, . . . , n and m ≤ n. Therefore, Rm,n is the set of all rational

functions with poles a1, . . . , an at most and with finite limit at ∞. In 2022,
Gulzar, Zargar, and Akhter [1] investigated an upper bound for the modulus
of rational functions.

Theorem 1.1. If r(z) ∈ Rn,n, has a zero of order ν at z0 with |z0| < 1 and
the remaining n− ν zeros lie in T1 ∪D+

1 , then for z ∈ T1

max
z∈T1

|r′(z)| ≤
1

2

(

1 + |z0|

1− |z0|

)ν
[

|B′(z)|+ ν

(

1− |z0|

1 + |z0|

)

]

max
z∈T1

|r(z)|.

Then, Gupta, Hans, and Mir [2] proved the following Theorem:

Theorem 1.2. If r(z) ∈ Rm,n, has two zeros of order µ and ν at z0 and z1
respectively with |z0| < 1, |z1| < 1 and the remaining m − µ − ν zeros lie in
T1 ∪D+

1 , then for z ∈ T1

max
z∈T1

|r′(z)| ≤
1

2

(

1 + |z0|

1− |z0|

)µ(
1 + |z1|

1− |z1|

)ν
[

|B′(z)| − (n−m) + µ

(

1− |z0|

1 + |z0|

)

+ ν

(

1− |z1|

1 + |z1|

)

]

max
z∈T1

|r(z)|.

2 Main Results

In this paper, we generalize some inequalities for the modulus of rational
functions. Let us start with a lemma due to Rasri and Phanwan [4].

Lemma 2.1. If r(z) ∈ Rm,n and all the zeros of r(z) lie in Tk ∪D+
k , k ≥ 1,

then for z ∈ T1

|r′(z)| ≤
1

2

[

|B′(z)| +
2m− n(1 + k)

1 + k

]

|r(z)|.

Theorem 2.2. Assume r(z) ∈ Rm,n has the zero z0 of order s0 with |z0| < k

and the remaining m− s0 zeros lie in Tk ∪D+
k , k ≥ 1. Then for z ∈ T1

max
z∈T1

|r′(z)| ≤
1

2

(

1 + |z0|

|1− |z0||

)s0
[

|B′(z)|+
2(m− s0)− n(1 + k)

1 + k
+

2s0
1 + |z0|

]

max
z∈T1

|r(z)|.



Generalizations of a bound for the rational functions... 587

Proof. Let r(z) = (z − z0)
s0h(z) where h(z) is a rational function having all

zeros lying in Tk ∪D+
k , k ≥ 1. Differentiation r(z) with respect to z, we get

r′(z) = (z − z0)
s0h′(z) + s0h(z)(z − z0)

s0−1.

Triangle inequality implies that

max
z∈T1

|r′(z)| ≤ (1 + |z0|)
s0 max

z∈T1

|h′(z)| + s0(1 + |z0|)
s0−1max

z∈T1

|h(z)| (2.1)

for z ∈ T1. Applying Lemma 2.1 for |h′(z)|, the inequality (2.1) yields

max
z∈T1

|r′(z)| ≤ (1 + |z0|)
s0

[1

2

(

|B′(z)|+
2(m− s0)− n(1 + k)

1 + k

)]

max
z∈T1

|h(z)|

+ s0(1 + |z0|)
s0−1max

z∈T1

|h(z)|

for z ∈ T1. Since maxz∈T1
|h(z)| ≤

maxz∈T1
|r(z)|

|1−|z0||s0
, we get

max
z∈T1

|r′(z)| ≤
1

2

(

1 + |z0|

|1− |z0||

)s0
[

|B′(z)|+
2(m− s0)− n(1 + k)

1 + k
+

2s0
1 + |z0|

]

max
z∈T1

|r(z)|

for z ∈ T1. The proof is complete.

Remark 2.3. 1. By letting k = 1, m = n in Theorem 2.2, it reduces to
Theorem 1.1.

2. By letting k = 1 in Theorem 2.2, it reduces to Corollary 2.7 of Gupta,
Hans, and Mir [2]

3. By letting s0 = 0 and k = 1 in Theorem 2.2, it reduces to Corollary 12
of Rasri and Phanwan [3].

Theorem 2.4. Assume r(z) ∈ Rm,n has the zero z0 of order s0 and the zero
z1 of order s1 with |z0| < k, |z1| < k and the remaining m − (s0 + s1) zeros
lie in Tk ∪D+

k , k ≥ 1. Then for z ∈ T1

max
z∈T1

|r′(z)| ≤
1

2

[(

1 + |z0|

|1− |z0||

)s0
(

1 + |z1|

|1− |z1||

)s1
(

|B′(z)|+
2(m− s0 − s1)− n(1 + k)

1 + k
+

2s0
1 + |z0|

)

+
2s1

1 + |z1|

(

1 + |z1|

|1− |z1||

)s1
]

max
z∈T1

|r(z)|.
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Proof. Let r(z) = (z − z1)
s1r0(z), where r0(z) = (z−z0)s0h(z)

w(z)
and h(z) be a

rational function having all its zeros lying in Tk ∪D+
k , k ≥ 1. Differentiating

r(z) with respect to z, we obtain r′(z) = (z− z1)
s1r′0(z)+ s1r0(z)(z− z1)

s1−1.

The Triangle Inequality implies that

max
z∈T1

|r′(z)| ≤ (1 + |z1|)
s1 max

z∈T1

|r′0(z)|+ s1(1 + |z1|)
s1−1max

z∈T1

|r0(z)|,

for z ∈ T1. Applying Theorem 2.2 for |r′0(z)|, we get

max
z∈T1

|r′(z)| ≤

[

(1 + |z0|)
s0(1 + |z1|)

s1

2|1− |z0||s0

(

|B′(z)| +
2(m− s0 − s1)− n(1 + k)

1 + k
+

2s0
1 + |z0|

)

+ s1(1 + |z1|)
s1−1

]

max
z∈T1

|r0(z)|,

for z ∈ T1. Since maxz∈T1
|r0(z)| ≤

maxz∈T1
|r(z)|

|1−|z1||s1
, we get

max
z∈T1

|r′(z)| ≤
1

2

[(

1 + |z0|

|1− |z0||

)s0
(

1 + |z1|

|1− |z1||

)s1
(

|B′(z)| +
2(m− s0 − s1)− n(1 + k)

1 + k

+
2s0

1 + |z0|

)

+
2s1

1 + |z1|

(

1 + |z1|

|1− |z1||

)s1
]

max
z∈T1

|r(z)|

for z ∈ T1. Thus the proof is complete.

Remark 2.5. By letting k = 1 in Theorem 2.4, it reduces to Theorem 1.2.

Theorem 2.6. Assume rv(z) =
(z−zv)sv (z−zv−1)

sv−1 ···(z−z0)s0h(z)
w(z)

∈ Rm,n, where

rv(z) has the zeros z0, z1, . . . , zv with |zi| < k, k ≥ 1 for 0 ≤ i ≤ v and h(z)
has all its zeros lying in Tk ∪D+

k , k ≥ 1. Then, for 0 ≤ i ≤ v and z ∈ T1

max
z∈T1

|r′v(z)| ≤
1

2

[

(

1 + |z0|

|1− |z0|

)s0
(

1 + |z1|

|1− |z1|

)s1

· · ·

(

1 + |zi|

|1− |zi|

)si
(

|B′(z)|

+
2(m− s0 − s1 − · · · − si)− n(1 + k)

1 + k
+

s0

1 + |z0|

)

+
2s1

1 + |z1|

(

1 + |z1|

|1− |z1|

)s1

· · ·

(

1 + |zi|

|1− |zi|

)si

+
2s2

1 + |z2|

(

1 + |z2|

|1− |z2|

)s2

· · ·

(

1 + |zi|

|1− |zi|

)si

+ · · ·

+
2si

1 + |zi|

(

1 + |zi|

|1− |zi|

)si
]

max
z∈T1

|rv(z)|. (2.2)
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Proof. Let rv(z) = (z−zv)sv (z−zv−1)
sv−1 ···(z−z0)s0h(z)

w(z)
, where rv(z) has the zeros

z0, z1, . . . , zv with |zi| < k for 0 ≤ i ≤ v and the remaining n − (s0 +

s1 + · · · + sv) zeros lie in Tk ∪ D+
k , k ≥ 1. Let r0(z) = (z − z0)

s0 h(z)
w(z)

and

r1(z) = (z − z1)
s1r0(z). An upper bound of |r′0(z)| is obtained by Theorem

2.2. Using the fact that |r0(z)| ≤
|r1(z)|

|1−|z1||s1
, we get an upper bound of |r1(z)|

as in Theorem 2.4. Let ri(z) = (z− zi)
siri−1. We can find an upper bound of

|r′i(z)| for 1 ≤ i ≤ v by a similar process using an upper bound of |r′i−1(z)|

from the previous process and the fact that |ri−1(z)| ≤
|ri(z)|

||1−|zi||si
for 1 ≤ i ≤ v.

Finally, we get inequality (2.2).
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