
International Journal of Mathematics and Computer Science
Volume 20, Issue no. 2, (2025), 549–553
DOI: https://doi.org/10.69793/ijmcs/02.2025/nibras

b b

M
CS

Efficient Brakerski-Fan-Vercauteren
Algorithm Using Hybrid-Position-Residues

Number System

Nibras Hadi Jawad, Salah Abdulhadi

Department of Computer Science
Faculty of Computer Science and Mathematics

University of Kufa
Najaf, Iraq

email: nibras.hadi@qu.edu.iq, nibrash.albustani@student.uokufa.edu.iq,
salah.albermany@uokufa.edu.iq

(Received January 18, 2025, Accepted February 15, 2025,
Published February 19, 2025)

Abstract

Cloud services must be dealt with in a way that preserves the
privacy of customer’s data. In order to achieve this, homomorphic en-
cryption is used which helps to complete business within the cloud en-
vironment while preserving the privacy of data from viewing it. In this
article, we use the Brakerski-Fan-Vercauteren (BFV) algorithm, which
requires high and expensive calculations, using the Hybrid-Position-
Residues (HPR) number system to reduce the cost of calculations
while maintaining the efficiency of the algorithm.

1 Introduction

The privacy challenge is solved by fully homomorphic encryption (FHE) us-
ing the Brakerski-Fan-Vercauteren (BFV) algorithm. BFV lets an untrusted
person use encrypted data without the decryption key [1]. The BFV main-
tains data privacy and prevents viewing when performing cloud operations.

Keywords and phrases: BFV, Fully homomorphic encryption, RSN, HPR.
AMS (MOS) Subject Classifications: 68P25, 68P27.
ISSN 1814-0432, 2025, https://future-in-tech.net



550 N. H. Jawad, S. Abdulhadi

To make the algorithm more efficient, we minimize time and memory use.
In 2019, Halevi et al. [2] improved decoding and multiplication utilizing
RNS residues number system. In 2021, Lara-Beńıtez et al. [3] analyzed
BFV, CKKS, and TFHE test results using three homomorphic approaches
for precision, memory utilization, and execution time. In 2022, Yates [4] dis-
cussed homomorphic encryption systems’ efficiency. In 2023, Kuo and Wu [5]
presented a fast procedure for secure comparison between two parties using
integers and HE fundamentals.

2 BFV with HPR Proposed System

The BFV technique costs time and generates noise from repeated calculations
when processing encrypted data. Suggested using the HPR system [6] in
BFV to improve algorithm efficiency by parallelizing operations, which speeds
execution and reduces noise. In general, the steps of modifying BFV are as
follows:

Step 1: Generate parameters: Degree of polynomials (N) is deter-
mines the level of security. The value of N used is 1024. Ciphertext mod
(q) must be a very large integer and the size of q = 50 bits. The value of q
used is (250 + 1) ≡ 1 mod (2 ∗ 1024). Plaintext mod (t) is the same as the
selected q. The value of t used is (230 + 1) ≡ 1 mod (2 ∗ 1024). A basis is
a set (µa, µb) consisting of two pairwise coprime integers used to represent
integers in RNS. Noise parameters (sp) are (a, e, e1, e2, u).

Step 2: Key Generation: First, generate a random number sk: Using
chaotic equations as a foundation, we create a three-dimensional chaotic
system. The standard algorithm relies on a binary key sk ∈ R2 from {0, 1}
which is a weak key that can be known and guessed. Therefore, we rely on
the system’s chaotic maps of the Lorenz equations depending on variables
x, y, and z chosen each time randomly from the period [0, 1]. As for the
values of α = 10, ρ = 28, and β = 8/3, the modified Lorenz equations are as
follows: {x = (α− 1) ∗ (y − x), y = x ∗ (ρ− z) − y, z = x ∗ y − β ∗ z + x}.
Then the values are combined into the following equation to give the result
(sk) as sk = ((x+ y + z) ∗ 1000)). The values of the proposed key 0 → 2279

have a large range. In the end, it is converted to HPR.
Secondly, compute the public key with used sk, a and e as the equation
pkHPR = (pkHPR

1 = ([−(aHPR.skHPR + eHPR)]M , PKHPR
2 = aHPR). The

value of a is chosen randomly from the range [0, Rq), convert a to HPR
before using in pk, generate the error value e from the range [−2, 2], and



Efficient BFV Algorithm Using HPR Number System 551

convert e to HPR.

Step 3: Input Plaintext (pt): Scaling pt: Delta (∆) from division q/t,
used before encryption message (pt) to produce pt ∗∆.

Encoding use batch encoding pt ∗∆: The BFV scheme is RLWE, batch
encoding based on CRT transform integer mod t into a polynomials (pte)
Rt = Zt[x]/(x

n+1) before encryption begins that allows encrypt many pt in
a parallel way. With the condition that t is a prime number, t ≡ 1 mod 2N ,
there exists element V where V

2N ≡ 1 (mod t) and its primitive root 2N th

of unity. We find an element h where 1 < h < 2N → V
h 6= 1 (mod t).

Then the ring Rt = [Zt[x]/(x
n + 1) = Zt[x]/(x− V)(x− V

1) . . . (x− V
2N−1)]

∼= [Zt[x]/(x−V) ∗Zt[x]/((x−V
1) ∗ . . . ∗Zt[x]/((x−V

2N−1)] ∼= [Zt[V] ∗ . . . ∗
Zt[V

2N−1]] ∼= ZN
t , use CRT to decode ZN

t .

Transform pte (coefficients of polynomials) to HPR → ptHPR
e .

Step 4: Encryption: The encryption in the proposed system is done
under HPR. Encrypt ptHPR

e to get the ciphertext CHPR = (CHPR
0 , CHPR

1 ) ∈
R2

ma|b
. CHPR consists of two polynomials (CHPR

0 and CHPR
1 ), the CHPR

0 is

computed by using pkHPR
0 . uHPR+ eHPR

1 + ptHPR
e ]M , and CHPR

1 is computed
by using [pkHPR

1 .uHPR + eHPR
2 ]M .

Step 5: Evaluation: Simple addition and multiplication operations are
performed within the RNS system. Compute CHPR3 by using ([CHPR1

0 o CHPR2
0 ],

[CHPR1
1 o CHP2

1 ]) where o is (+ or ∗) operation.

Step 6: Decryption: To recover the plaintext (pt) from the algorithm
after obtaining the CHPR3 output, use the following equation: ptHPR

e =
⌈

[C0
HPR+C1

HPR.skHPR]
M

∆

⌉

t

represent the CHPR3 = (CHPR3
0 , CHP3

1 ) as: CHPR3
i =

∑d−1

j=0
CHPR3

i,j M j for i = {0, 1} where CHPR3
i,j ≤ µa.p, (0 ≤ j ≤ d− 2).

Step 7: Transform ptxHPR
e fromHPR to normal number: To transform

ptHPR
e to pte by using Base Extension based on MRC.

Step 8: Decoding pt: Decoding the result pte that are polynomials
by using batch decoding to compute [Zt[V] ∗ . . . ∗ Zt[V

2N−1]] to recover the
plaintext.

3 Analysis and Study of the Results

3.1 Chaotic key generation of sk

The chaotic system calculates a three-dimensional secret key using three
Lorenz equations with a little modification. This will give the suggested



552 N. H. Jawad, S. Abdulhadi

secret key a chaotic structure based on Lyapunov’s criteria for chaos size
(0.83004, 0.0010723, and -13.4978). The chaotic system requires different
initial values for each key generation and is sensitive to even the slightest
change in them. Since the key values change with any slight change in the
variables, the resulting keys are different in both cases. The computer gen-
erates the key using six parameters (x0, y0, z0, α, ρ, and β) with a precision
of 1014. Multiplying (1014)6 ∼= 2279 yields a key > 2128, making it reliable for
encryption and resistant to brute force attacks. Use NIST for analysis of sk
as follows: (Run: 0. 87057708, Frequency: 0. 07658140, Serial: 0. 19613940,
Random excursion: 0.913788, Linear complexity: 0. 69479678, Binary ma-
trix rank: 0. 05650373, Overlapping template matching: 0. 32417062, En-
tropy: 0. 20726256).

3.2 Noise

The BFV system uses multiple random values. If noise values are above
the threshold limit, decoding may be affected. Operations on ciphertexts
mixed with noise increase noise size and growth. It must be rounded to
the nearest integer and error parameters limited to t

2q
. to eliminate errors.

Compared to the original technique, the new algorithm returns smaller noise
coefficients due to decreased coefficient values. ci(y) =

∑d−1

j=0
cijy

i where
‖ci‖ ≤ µ ∗ p and error. limited by ‖e‖ ≤ p

p−1
∗ µ, without causing a large

error when representing MSD mod µ. The error in the result of original
BFV is 0.000816000625 while the error resulting from the Proposed BFV is
0.0000099.

3.3 Consumed memory

The consumed memory original BFV (Key: 63.1, Encryption: 63.3, Decryp-
tion: 62.2), and consumed memory proposed BFV (Key: 61.4, Encryption:
60.1, Decryption: 59.5).

3.4 Consumed Time

Table 1 shows the time taken to generate the key with encryption and de-
cryption.



Efficient BFV Algorithm Using HPR Number System 553

Table 1: Time consumed

BFV q t
Time in second

key encryption decryption
original 250 230 0.00433 0.00035 0.00023
proposed 250 230 0.00804 0.000073 0.000036

4 Conclusion

Using the HPR system which is a hybrid algorithm between RNS and PNS
in the BFV algorithm leads to faster execution of operations and reduced
noise in addition to saving space in memory as the work is sequential. Using
HPR instead of just RNS, modular multiplications are more effective.

References

[1] Inferati Inc., Introduction to the BFV FHE Scheme, (2021). Available
at: https://www.inferati.com/blog/fhe-schemes-bfv

[2] S. Halevi, Y. Polyakov, V. Shoup, An Improved RNS Variant of the BFV
Homomorphic Encryption Scheme. In Topics in Cryptology–CT-RSA,
Lecture Notes in Computer Science, 11405, Springer, Cham., (2019),
183–201.

[3] P. Lara-Beńıtez, M. Carranza-Garćıa, J. C. Riquelme, An experimental
review on deep learning architectures for time series forecasting, Inter-
national Journal of Neural Systems, 31, no. 3, (2021), 2130001.

[4] K. Yates, Efficiency of Homomorphic Encryption Schemes, M. Sc. The-
sis, Clemson University, Clemson, SC, USA, (2022).

[5] T. H. Kuo, J. L. Wu, A High Throughput BFV-Encryption-Based Secure
Comparison Protocol, Mathematics, 11, no. 5, (2023), 1227.

[6] K. Bigou, A. Tisserand, Hybrid position-residues number system. In
IEEE 23rd Symposium on Computer Arithmetic, IEEE, (2016), 126–
133.


