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Abstract

In this work, we study the injective chromatic number of the graph
Ck
n, which is a graph obtained from Cn by adding an edge to any two

distinct vertices with distance 2 to k on Cn. An injective coloring of a
graph G is a vertex coloring in which any pair of vertices with a com-
mon neighbor are assigned different colors. The injective chromatic
number χi(G) of a graph G is the least positive integer k such that
G has an injective k-coloring. In this work, we determine χi(C

k
n) for

all n and k. When n ≤ 2k + 1, the graph Ck
n becomes a complete

graph Kn, with injective chromatic number n. For larger values of n,
we obtain the following main results: if r = 0, then χi(C

k
n) = 2k + 1,

while if 1 ≤ r ≤ 2k, then χi(C
k
n) = 2k + x̃+ 1, where x̃ is the largest

natural number such that 1 + (2k + 1)⌈ n

2k+x
⌉ > n. Additionally, we

find χi(P
k
n ) for all n and k where P k

n is a graph obtained similarly
from a path Pn.

1 Introduction

Imagine a network of communication stations such that each station has a
single communication channel, and any two stations may or may not com-
municate with each other directly. To prevent confusion, we require that no
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two stations with the same channel can communicate directly with the same
station. For example, if stations A and B have the same channel, they cannot
both communicate directly with station C.

This problem of assigning channels to the stations can be modeled as an
injective coloring problem in graph theory, where the stations are represented
by vertices, direct communications between two stations are represented by
edges, and the communication channels are represented by colors. The goal
is to find the minimum number of colors (or channels) needed to assign to the
vertices so that two vertices with the same neighbor receive distinct colors.
The problem becomes finding the injective chromatic number of a specific
graph which we define and discuss in detail later in this section.

Throughout this study, we consider G as a simple, finite, and undirected
graph with the vertex set V (G). A vertex coloring of G is said to be an
injective coloring if any pair of vertices with a common neighbor are assigned
different colors. Note that such a coloring is not necessarily proper, meaning
that adjacent vertices may be colored with the same color. The injective

chromatic number χi(G) of G is the least positive integer k needed for an
injective k-coloring of G.

In 2002, G. Hahn et al. [4] defined the injective coloring of a graph and
gave some bounds of the injective chromatic number in general, plus some
exact values. Additionally, they provided a characterization for graphs in
which each bound is attained. Furthermore, they presented the results on
the injective chromatic numbers of Cartesian product of graphs, including
hypercubes.

In 2008, Hell et al. [5] demonstrated that for any chordal graph G, the
computation of χi(G) is at least as efficient as determining χ(G−B)2, where
χ(G− B)2 is the chromatic number of (G− B)2 and B is the set of bridges
of G. This finding indicates that the injective chromatic number can be
computed in polynomial time for both strongly chordal graphs and so-called
power chordal graphs.

In 2010, Cranston et al. [3] proved several results regarding the injective
chromatic numbers. In particular, they showed that if the maximum average
degree of G (mad(G)) is at most 5

2
, then χi(G) ≤ ∆(G) + 1. Furthermore, if

mad(G) < 42
19
, then χi(G) = ∆(G). They also show that, for planar graphs

G with minimum cycle length (girth) of g(G) and ∆(G) ≥ 4, if g(G) ≥ 9,
then χi(G) ≤ ∆(G) + 1. Additionally, if g(G) ≥ 13, then χi(G) = ∆(G).

In 2015, Song and Yue [8] gave sharp bounds, and in some cases exact
values, for the injective chromatic numbers of the Cartesian product, join,
union, direct product, lexicographic product, and disjunction of graphs.
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In this work, we focus on the injective chromatic number of a specific
graph, Ck

n
.

If the network has stations arranged in a circular manner such that each
station can communicate directly to any other station within a certain dis-
tance, the resulting network can be modeled using Ck

n
, the k-th power of a

cycle.
The graph Ck

n
has been the subject of extensive study in graph theory.

Several works have investigated various types of graph coloring on Ck

n
, includ-

ing list coloring [7], total coloring [2], incidence coloring [6], acyclic coloring
[1], and star coloring [1].

This work aims to determine χi(C
k

n
) for all n in terms of integers k, t, and

r, where n = (2k + 1)t + r with t ≥ 1 and 0 ≤ r ≤ 2k. To the best of our
knowledge, exact results of χi(C

k

n
) have not been provided in the literature

for all n and k.
Our main theorem directly addresses this gap in the literature by pro-

viding explicit formula for χi(C
k

n
) as follows. When n ≤ 2k + 1, the graph

Ck

n
becomes a complete graph Kn, with injective chromatic number n. For

larger values of n, we obtain the following main results: if r = 0, then
χi(C

k

n
) = 2k + 1, while if 1 ≤ r ≤ 2k, then χi(C

k

n
) = 2k + x̃ + 1, where x̃ is

the largest natural number such that 1 + (2k + 1)⌈ n

2k+x
⌉ > n.

2 Main results

First, we determine χi(P
k

n
), for n ≥ 3 and k ≥ 2.

Theorem 2.1. χi(P
k

n
) =

{

2k + 1, if n ≥ 2k + 1,

2k + 1− d, if n = 2k + 1− dwhere 1 ≤ d ≤ 2k − 2.

Proof. Let v1, v2, . . . , vn be the vertices of Pn in the usual arrangement.
For the case n ≥ 2k + 1, we define the color set to be {1, 2, . . . , 2k + 1}.

Now, we give the coloring of P k

n
as follows. For the first 2k + 1 vertices,

we color these vertices as 1, 2, . . . , 2k + 1. Observe that any two colored
vertices have a common neighbor, and thus χi(P

k

n
) ≥ 2k + 1. Next, we

give colors 1, 2, . . . , 2k+1, . . . , 1, 2, . . . consecutively for n−2k−1 remaining
vertices. One can see that this is a (2k+1)-injective coloring. Thus we have
χi(P

k

n
) ≤ 2k + 1, and this case is complete. For the case n = 2k + 1 − d

where 1 ≤ d ≤ 2k−2, the upper bound χi(P
k

2k+1−d
) ≤ n = 2k+1−d follows

immediately. Since any two vertices of P k

2k+1−d
have a common neighbor, it

follows that χi(P
k

2k+1−d
) ≥ 2k + 1− d. This completes the proof.
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Now we proceed to find χi(C
k

n
). Let v1, v2, . . . , vn be the vertices of Cn in

the usual arrangement. Observe that if n ≤ 2k+1, then Ck

n
forms a complete

graph Kn. The injective chromatic number of this graph is n as shown in [4]
for n ≥ 3. Therefore it remains to consider the case where n ≥ 2k+2 for Ck

n
.

From this point forward, we express n in the form n = (2k+1)t+r where
t and r are integers satisfying t ≥ 1 and 0 ≤ r ≤ 2k.

Lemma 2.2. If n = (2k+α+β)b+(2k+α)d where α, b are positive integers

and β, d are nonnegative integers, then χi(C
k

n
) ≤ 2k + α+ β.

Proof. Assume n as in the lemma. To establish the bound for χi(C
k

n
), we

give a coloring as follows.
For the first (2k + α+ β)b vertices, we divide these vertices into b blocks

of consecutive 2k + α + β vertices and we give a coloring of each block as
1, 2, . . . , 2k + α + β.

For the remaining (2k + α)d vertices, we divide these vertices into d

blocks of consecutive 2k + α vertices and we give a coloring of each block
as 1, 2, . . . , 2k + α. Observe that any two vertices with the same color lie
in distinct blocks and thus they have no common neighbor. This yields
χi(C

k

n
) ≤ 2k + α + β as desired.

Lemma 2.3. If an injective coloring on Ck

n
yields a color class of size b,

then n ≥ (2k + 1)b.

Proof. Consider a color class A of size b. Since any pair of vertices in A

have no common neighbors, there are at least 2k vertices in Cn between any
two vertices in Cn. It follows that n ≥ (2k + 1)b as desired.

Theorem 2.4. χi(C
k

n
) = 2k + 1 if and only if n is divisible by 2k + 1.

Proof. Necessity. Let n = (2k + 1)t + r such that t ≥ 1 and 1 ≤ r ≤ 2k.
Suppose to the contrary that Ck

n
has an injective coloring using 2k+1 colors.

By the Pigeonhole principle, there are ⌈ n

2k+1
⌉ = t + 1 vertices of the same

color. It follows from Lemma 2.3 that n ≥ (2k+1)(t+1) = (2k+1)t+(2k+1),
a contradiction. Thus χi(C

k

n
) > 2k + 1.

Sufficiency. Let n = (2k+1)t. It follows from Lemma 2.2 that χi(C
k

n
) ≤

2k + 1. Since the graph Ck

n
contains P k

n
as a subgraph, it follows from

Theorem 2.1 that χi(C
k

n
) ≥ 2k + 1. Thus χi(C

k

n
) = 2k + 1.

Recall that n = (2k+1)t+r.Now, we assume r ≥ 1 and let x̃ be the largest
natural number such that 1+(2k+1)⌈ n

2k+x̃
⌉ > n. Since 1+(2k+1)⌈ n

2k+1
⌉ =

1 + (2k + 1)(t+ 1) = (2k + 1)t + (2k + 2) > n, it follows that x̃ ≥ 1.
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Lemma 2.5. If r ≥ 1, then χi(C
k

n
) ≥ 2k + x̃+ 1.

Proof. Let r ≥ 1, and suppose to the contrary that Ck

n
has an injective

coloring using 2k + x̃ colors. By the Pigeonhole principle, there are ⌈ n

2k+x̃
⌉

vertices with the same color. Since ⌈ n

2k+x̃
⌉ ≥ t + 1 by the definition of x̃, it

follows from Lemma 2.3 that n ≥ (2k+1)⌈ n

2k+x̃
⌉ = (2k+1)(t+1). However,

this contradicts n = (2k + 1)t+ r where r ≤ 2k. Thus χi(C
k

n
) ≥ 2k + x̃+ 1.

Lemma 2.6. If 1 ≤ r ≤ t, then x̃ = 1 and χi(C
k

n
) = 2k + 2.

Proof. Let 1 ≤ r ≤ t. From the proof of Theorem 2.4, we have χi(C
k

n
) ≥

2k+ 2. Using Lemma 2.2 on n = (2k+ 1)t+ r = (2k+ 2)r+ (2k+ 1)(t− r),
we have χi(C

k

n
) ≤ 2k + 2. Thus χi(C

k

n
) = 2k + 2.

To show x̃ = 1, we write n = (2k + 2)t − (t − r). Consider ⌈ n

2k+2
⌉ =

t − ⌊ t−r

2k+2
⌋ ≤ t. Consequently, 1 + (2k + 1)⌈ n

2k+2
⌉ ≤ 1 + (2k + 1)t ≤ n. By

definition of x̃, we have x̃ < 2. Recall that x̃ ≥ 1. Thus x̃ = 1 as desired.
We now present the main theorem of this paper.

Theorem 2.7. If r ≥ 1, then χi(C
k

n
) = 2k + x̃ + 1, where x̃ is the largest

natural number such that 1 + (2k + 1)⌈ n

2k+x
⌉ > n.

Proof. It follows from Lemma 2.6 that the theorem is true for r ≤ t. Now
let 1 ≤ t < r ≤ 2k. It follows from Lemma 2.5 that χi(C

k

n
) ≥ 2k + x̃+ 1.

To establish χi(C
k

n
) ≤ 2k+ x̃+1, note that n = (2k+ x̃)t+ r− (x̃−1)t =

(2k+ x̃+1)(r− (x̃− 1)t) + (2k+ x̃)(t− r+ (x̃− 1)t). If r− (x̃− 1)t ≥ 1 and
t− r + (x̃− 1)t ≥ 0, then Lemma 2.2 yields that χi(C

k

n
) ≤ 2k + x̃+ 1. Thus

it remains to show that r − (x̃− 1)t ≥ 1 and t− r + (x̃− 1)t ≥ 0.
From the definition of x̃, we have 1+ (2k+1)⌈ n

2k+x̃
⌉ > n ≥ 1+ (2k+1)t.

Since n = (2k + x̃)t + r − (x̃ − 1)t, we have (2k + 1)
(

t + ⌈ r−(x̃−1)t
2k+x̃

⌉
)

≥

(2k + 1)t+ 1. Thus r − (x̃− 1)t ≥ 1 as required.
From the definition of x̃ again, we have 1 + (2k + 1)⌈ n

2k+x̃+1
⌉ ≤ n. Since

n = (2k + x̃ + 1)t + r − x̃t, it follows that (2k + 1)t + r = n ≥ 1 + (2k +
1)⌈ n

2k+x̃+1
⌉ = 1 + (2k + 1)t+ (2k + 1)⌈ r−x̃t

2k+x̃+1
⌉.

Consequently, r − 1 ≥ (2k + 1)⌈ r−x̃t

2k+x̃+1
⌉. Since 2k ≥ r, it follows that

r − x̃t ≤ 0. Thus t− r + (x̃− 1)t ≥ 0 as required, completing the proof.
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3 Conclusion

In conclusion, we establish the explicit formula for χi(C
k

n
) where n = (2k +

1)t+ r in the usual form as follows:

• If t = 0, that is n ≤ 2k + 1, then χi(C
k

n
) = n;

• If t ≥ 1 and r = 0, then χi(C
k

n
) = 2k + 1;

• If t ≥ 1 and 1 ≤ r ≤ 2k, then χi(C
k

n
) = 2k + x̃ + 1, where x̃ is the

largest natural number such that 1 + (2k + 1)⌈ n

2k+x
⌉ > n.
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