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Abstract

We introduce a 2-semi-inner product on the space of p-summable

sequences. Using this 2-semi-inner product, we define the hp-orthogonality

and the hp-angle between two vectors and discuss their properties.

Moreover, we formulate the hp-angle between two 2-dimensional sub-

spaces that intersects a 1-dimensional subspace. Using this formula,

we construct the space of p-summable sequences as a strictly convex

2-normed space.
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1 Introduction

The theory of 2-normed spaces was initially introduced by Gähler [3] in the
mid 1960’s and that of 2-inner product spaces was initially introduced by
Diminnie, Gähler and [4] in 1970’s. Since then, many researchers have studied
these two spaces and obtained various results ([5, 6, 7, ?]. In a 2-inner product
space (X, 〈·, ·|·〉), we can calculate angles between two subspaces. Using the
standard 2-inner product and the standard 2-norm in inner product space,
the concept of the angle between two subspace in general has been studied
intensively — see [8, 9, ?]. Then, Nur et al. [10, 11, 12] introduced the angle
between two subspaces in a normed space that is not an inner product space.
As it is known, not all 2-normed spaces are 2-inner product spaces. For
instance, the space ℓp for 1 ≤ p < ∞ and p 6= 2, equipped with the 2-norm
‖·, ·‖p, defined by Gunawan [6]:
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is not a 2-inner product space.
Let (X, ‖·, ·‖) be a 2-normed space. The functional h : X3 → R de-
fined by h(x, y)(z) = 1

2
‖x, y‖ [τ+(x, y)(z) + τ−(x, y)(z)] with τ±(x, y)(z) =

limt→±0
‖x+tz,y‖−‖x,y‖

t
, satisfies the following properties:

1. h(x, y)(x) = ‖x, y‖2 for every x, y ∈ X ;

2. h(αx, y)(βz) = αβh(x, y)(z) for every x, y, z ∈ X and α, β ∈ R;

3. h(x, y)(x+ z) = ‖x, y‖2 + h(x, y)(z) for every x, y, z ∈ X ;

4. |h(x, y)(z)| ≤ ‖x, y‖ . ‖y, z‖ for every x, y, z ∈ X .

If, in addition, the functional h(x, y)(z) is linear in terms of yz, then h
is called a 2-semi-inner product on X [1]. Note that, in (X, 〈·, ·|·〉), the
functional h(x, y)(z) is identical with 〈x, y|·〉. Specifically, (ℓp, ‖·, ·‖p) raises
two questions:
Can we define an explicit form the 2-semi-inner product on ℓp? Can we define
the ortogonality and the angle on ℓp with the equpped 2-norm?
In this article, we will introduce the angle between two subspace of a 2-
normed space using the 2-semi-inner product h. We also apply this formula
to examine a strictly convex 2-normed space. In the last section, we will
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discuss the 2-semi-inner product h(x, y)(z) in ℓp spaces. Moreover, ℓp space,
equipped 2-norm, is strictly convex.

2 Main Result

2.1 A 2-semi-inner product on ℓp

In this subsection, we will discuss the angle between two subspaces of (ℓp, ‖·, ·‖p).
We first state the definition 2-semi inner product of ℓp spaces. Let (ℓp, ‖·, ·‖p)
be a 2-normed space with 1 ≤ p < ∞. Take a set {x, y, z} in ℓp. We define
the following mapping hp(x, z)(y) by

hp(x, y)(z) =
‖x, y‖2−p
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Then we have the following result.

Theorem 2.1. The mapping hp(x, y)(z) in (2.2) defines a 2-semi-inner prod-
uct on ℓp.

Proof. We will verify that hp(x, y)(z) satisfies the four properties of functional
h and linear in terms of z.

1. Observe that hp(x, y)(x) = ‖x, y‖2p .

2. By using the properties of determinants, we have

hp(ax, y)(bz) = abhp(x, y)(z).

3. Observe that

hp(x, y)(x+ z) =

[
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= ‖x, y‖p + hp(x, y)(y).
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4. Observe that

|hp(x, y)(z)| ≤
‖x, y‖2−p
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5. Using the properties of determinants,
hp(x, y)(z + z′) = hp(x, y)(z) + hp(x, y)(z

′).

Therefore, hp(x, y)(z) defines a 2-semi-inner product on ℓp.

Remark 2.2. Note that, for p = 2, we have h2(x, x)(z) = h2(z, z)(x) and
h2(x, y)(z) = h2(y, x)(z). Hence, h2(x, y)(z) is the 2-inner product on ℓ2.

2.2 hp-Orthogonality and hp-angle

Let (ℓp, ‖·, ·‖p) be a 2-normed space and let {a1, a2} be a linearly independent
set in ℓp. First, we write the norm defined by Gunawan in [6] as follows:

‖x‖hp
:=
[

‖x, a1‖
2
p + ‖x, a2‖

2
p

]
1

2 , for every x ∈ ℓp. Next, we can define a
mapping that is obtained from the 2-semi inner product h(·, ·)(·) by

[x, z]hp
= hp(x, a1)(z) + hp(x, a2)(z) (2.3)

where x, z ∈ ℓp. Then, we obtain the proposition as follows:

Proposition 2.3. The mapping [x, z]hp
in (2.3) defines a semi-inner product

on (ℓp, ‖·, ·‖p).

Proof. 1. Using the properties of 2-semi inner product, we have [x, x]hp
≥

0 and [x, x]hp
= 0 if and only if x = 0.

2. Using the properties of 2-semi inner product, we have [αx, βz]hp
=

hp(αx, a1)(βz) + h(αx, a2)(βz) = αβhp(x, a1)(z) + αβhp(x, a2)(z) =
αβ[x, z]hp

.
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3. We observe that [x, y + z]hp
= hp(x, a1)(y + z) + hp(x, a2)(y + z) =

hp(x, a1)(y)+hp(x, a1)(z)+hp(x, a2)(y)+hp(x, a2)(z) = [x, y]hp
+[x, z]hp

.

4. We observe that
∣

∣[x, z]hp

∣

∣ ≤ |hp(x, a1)(z)| + |hp(x, a2)(z)|. Using the
properties of 2-semi inner product, we have

∣

∣[x, z]hp

∣

∣ ≤ ‖x, a1‖p ‖z, a1‖p+

‖x, a2‖p ‖z, a2‖p . Since 2ab ≤ a2 + b2 for any a, b ≥ 0, we obtain
(

[x, z]hp

)2
≤ (‖x, a1‖

2
p + ‖x, a2‖

2
p)(‖z, a1‖

2
p + ‖z, a2‖

2
p) = ‖x‖2hp

‖z‖2hp
.

Remark 2.4. In general, the semi inner product [·, ·]hp
does not satisfy the

commutative property. For example, the space ℓ1 with a1 = (1, 0, 0, . . . ) and
a2 = (0, 1, 0, . . . ). Take x = (1, 2, 2, 0, . . . ) and z = (3, 1,−2, 0, . . . ). Clearly,
‖x, a1‖1 = 8 , ‖x, a2‖1 = 6, ‖z, a1‖1 = 6 and ‖z, a2‖1 = 10. Therefore,
[x, z]h1

= −2 and [z, x]h1
= −10. Hence [x, z]hp

6= [z, x]hp
. If p = 2, then we

can observe that [x, z]h2
is the inner product.

Next, by using the semi-inner product [·, ·]hp
, we introduce hp-orthogonality

and he angle between two nonzero vectors x and z on (ℓp, ‖·, ·‖p) as follows:

Definition 2.5. Let (ℓp, ‖·, ·‖p) be a 2-normed space. A vector x is hp-
orthogonal to z, and we symbolize as x ⊥hp

z, if and only if [x, z]hp
= 0.

Then, the angle between two nonzero vectors x and z is defined by Θhp
(x, z)

such that

Θhp
(x, z) := arccos

[x, z]hp

‖x‖hp
‖z‖hp

.

Note that Θhp
(x, z) = 1

2
π if and only if [x, z]hp

= 0 or x ⊥hp
z. Since

∣

∣[x, z]hp

∣

∣ ≤ |x‖hp
‖z‖hp

, π ≤ Θhp
(x, z) ≤ π.

The angle Θhp
(·, ·) has the following properties.

Proposition 2.6. Let (ℓp, ‖·, ·‖p) be a 2-normed space. The angle Θhp
(x, z)

satisfies the following properties:

(a) If x and z are of the same direction, then Θhp
(x, z) = 0; if x and z

are of the opposite direction, then Θhp
(x, z) = π (part of parallelism

property).

(b) Θhp
(αx, βz) = Θhp

(x, z) if αβ > 0; Θhp
(αx, βz) = π − Θhp

(x, z) if
αβ < 0 (homogeneity property).

(c) If xn → x (in norm), then Θhp
(xn, z) → Θhp

(x, z) (part of continuity
property).
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Proof. (a) Let z = kx for an arbitrary nonzero vector x in ℓp and k ∈

R−{0}. We have Θhp
(x, z) = arccos

[kx,x]hp
‖x‖hp‖kx‖hp

= arccos
k‖x‖2

hp

|k|‖x‖2
hp

. Hence,

Θhp
(x, z) = 0 for k > 0 and Θhp

(x, z) = π for k < 0.

(b) Let α, β ∈ R− {0}. Observe that Θhp
(αx, βz) = arccos

αβ[x,z]hp
|αβ|‖x‖hp‖y‖hp

.

(c) If xk → x (in norm ‖ · ‖hp
), then |[x, zn − z]hp

| ≤ ‖x‖hp
‖zn − z‖hp

→ 0.
Observe that [x, zn − z]hp

= [x, zn]hp
− [x, z]hp

. We have [x, zn]hp
→

[x, z]hp
. Hence, Θhp

(x, zn) → Θhp
(x, z),

as desired.

Remark 2.7. From Remark 2.4, we can conclude that the angle Θhp
(·, ·)

does not satisfy the symmetry property. Likewise, the g-angle does not sat-
isfy the continuity property. For instance, take zn = ( 1

n
, 2, 0, . . . ), z =

(0, 2, 0, . . . ), and x = (2, 2, 0, ..) in ℓ1. We observe that cosΘh1
(x, zn) = 0 for

any n ∈ N, but cosΘh1
(x, z) 6= 0.

3 Further Results

Using the 2-semi-inner product h, we define the angle between subspaces
U = span{u, w} and V = span{v, w} of the 2-normed space, as follows.

Definition 3.1. If U = span{u, w} and V = span{v, w} are 2-dimensional
subspaces of (X, ‖·, ·‖) that intersects on 1-dimensional subspaceW = span{w},
then the angle between U and V is defined by Θh(U, V ) with cosΘh(U, V ) =
h(u,w)(v)
‖u,w‖‖v,w‖

.

Remark 3.2. Using Properties 4 in 2-semi-inner product h, we have
−π ≤ Θhp

(U, V ) ≤ π. This fact shows that Definition 3.1 makes sense.
For example, in ℓ1, take u = (3, 1, 0, · · · ), v = (2, 1, 0, · · · ), and w =

(1,−1, 0, · · · ). Using formula in Definition 3.1, we obtain Θh1
(U, V ) = 0.

Next, we will show (ℓp, ‖·, ·‖) is strictly convex 2-normed space. First, we
recall definition of strictly convex 2-normed space as follows:

Definition 3.3. [13] Let x, y ∈ (X, ‖·, ·‖) be non-zero elements and let V (x, y)
denote the subspace of X generated by the vectors x and y. The space X
is strictly convex if ‖x, y‖ = ‖y, z‖ =

∥

∥

x+y

2
, z
∥

∥ = 1 and z /∈ V (x, y), for
x, y, z ∈ X , imply x = y.
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Then Franić [2] give the connection between strictly convex 2-normed
space and 2-semi-inner product in following theorem.

Theorem 3.4. Let [·, ·|·] be a 2-semi-inner product compatible with a 2-norm
on (X, ‖·, ·‖). X is strictly convex if and only if [x, y|z] = ‖x, z‖ ‖y, z‖ and
z /∈ V (x, y) for x, y, z ∈ X implies y = ax, for some a > 0.

Next, we obtain the following result.

Theorem 3.5. Let (ℓp, ‖·, ·‖p) be a 2-normed space where 1 ≤ p < ∞ and
Θhp

(U, V ) be the angle between two subspaces U = span{u, w} and V =
span{v, w} in ℓp. Then the following statements are equivalent:
(1) ℓp is strictly convex.
(2) If cosΘhp

(U, V ) = 1 where w /∈ span{u, v}, then u = av for some a > 0.

Proof. Let us first prove that (1) implies (2). Suppose ℓp is strictly convex.
If cosΘhp

(U, V ) = 1 , w /∈ span{u, v} then hp(u, w)(v) = ‖u, w‖p ‖v, w‖p,w /∈
span{u, v}. Since hp(u, w)(v) is a 2-semi inner product on ℓp, then u = av
for some a > 0 by Theorem 3.4. Next, we show that (2) implies (1). Assume
cos θhp

(U, V ) = 1 where w /∈ span{u, v}. Then u = av for some a > 0.
Suppose hp(u, w)(v) = ‖u, w‖p ‖v, w‖p, w /∈ span{u, v}. By Definition 2.2,
we obtain cosΘhp

(U, V ) = 1, w /∈ span{u, v} and by assumption, u = av , for
some a > 0. Finally, we have hp(u, w)(v) = ‖u, w‖p‖v, w‖p, w /∈ span{u, v}
implies u = av, for some a > 0. According to Theorem 3.4, ℓp is a strictly
convex 2-normed space.

4 Conclusion

In this work, we have formulated the the 2-semi-inner product h on ℓp spaces.
Using this formula, we have defined the hp-orthogonality and the hp-angle
between two vectors and have discussed theirs properties. Moreover, we have
defined the hp-angle between U = span{u, w} and V = span{v, w} in ℓp. We
also have proved ℓp space as a strictly convex 2-normed space.
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