International Journal of Mathematics and Computer Science Volume **20**, Issue no. 2, (2025), 481–488 DOI: https://doi.org/10.69793/ijmcs/02.2025/muh

A Notion of Angle using a 2-Semi-inner Product on the Space of *p*-Summable Sequences

 $\binom{\mathrm{M}}{\mathrm{CS}}$

Muh Nur¹, Al Azhary Masta², Mawardi Bahri¹, Anna Islamiyati³

¹Department of Mathematics Faculty of Mathematics and Natural Science Hasanuddin University Makassar, Indonesia

²Mathematics Study Program Faculty of Mathematics and Science Education Universitas Pendidikan Indonesia Bandung, Indonesia

³Department of Statistics Faculty of Mathematics and Natural Science Hasanuddin University Makassar, Indonesia

email: muhammadnur@unhas.ac.id

(Received December 4, 2024, Accepted January 5, 2025, Published January 6, 2025)

Abstract

We introduce a 2-semi-inner product on the space of p-summable sequences. Using this 2-semi-inner product, we define the h_p -orthogonality and the h_p -angle between two vectors and discuss their properties. Moreover, we formulate the h_p -angle between two 2-dimensional subspaces that intersects a 1-dimensional subspace. Using this formula, we construct the space of p-summable sequences as a strictly convex 2-normed space.

Key words and phrases: 2-semi-inner product, h_p -orthogonality, h_p -angle, p-summable sequences, strictly convex.

AMS (MOS) Subject Classifications: 15A03, 46B20, 46E30. ISSN 1814-0432, 2025, https://future-in-tech.net

1 Introduction

The theory of 2-normed spaces was initially introduced by Gähler [3] in the mid 1960's and that of 2-inner product spaces was initially introduced by Diminnie, Gähler and [4] in 1970's. Since then, many researchers have studied these two spaces and obtained various results ([5, 6, 7, ?]. In a 2-inner product space $(X, \langle \cdot, \cdot | \cdot \rangle)$, we can calculate angles between two subspaces. Using the standard 2-inner product and the standard 2-norm in inner product space, the concept of the angle between two subspace in general has been studied intensively — see [8, 9, ?]. Then, Nur et al. [10, 11, 12] introduced the angle between two subspaces in a normed space that is not an inner product space. As it is known, not all 2-normed spaces are 2-inner product spaces. For instance, the space ℓ^p for $1 \leq p < \infty$ and $p \neq 2$, equipped with the 2-norm $\|\cdot, \cdot\|_p$, defined by Gunawan [6]:

$$\|x,y\|_{p} = \left[\frac{1}{2}\sum_{j}\sum_{k}\left(\operatorname{abs}\left|\begin{array}{cc}x_{j} & x_{k}\\y_{j} & y_{k}\end{array}\right|\right)^{p}\right]^{\frac{1}{p}}$$
(1.1)

is not a 2-inner product space.

Let $(X, \|\cdot, \cdot\|)$ be a 2-normed space. The functional $h : X^3 \to R$ defined by $h(x, y)(z) = \frac{1}{2} \|x, y\| [\tau_+(x, y)(z) + \tau_-(x, y)(z)]$ with $\tau_{\pm}(x, y)(z) = \lim_{t \to \pm 0} \frac{\|x+tz,y\|-\|x,y\|}{t}$, satisfies the following properties:

- 1. $h(x,y)(x) = ||x,y||^2$ for every $x, y \in X$;
- 2. $h(\alpha x, y)(\beta z) = \alpha \beta h(x, y)(z)$ for every $x, y, z \in X$ and $\alpha, \beta \in \mathbb{R}$;
- 3. $h(x,y)(x+z) = ||x,y||^2 + h(x,y)(z)$ for every $x, y, z \in X$;
- 4. $|h(x,y)(z)| \le ||x,y|| \cdot ||y,z||$ for every $x, y, z \in X$.

If, in addition, the functional h(x, y)(z) is linear in terms of yz, then h is called a 2-semi-inner product on X [1]. Note that, in $(X, \langle \cdot, \cdot | \cdot \rangle)$, the functional h(x, y)(z) is identical with $\langle x, y | \cdot \rangle$. Specifically, $(\ell^p, \| \cdot, \cdot \|_p)$ raises two questions:

Can we define an explicit form the 2-semi-inner product on ℓ^p ? Can we define the ortogonality and the angle on ℓ^p with the equpped 2-norm?

In this article, we will introduce the angle between two subspace of a 2normed space using the 2-semi-inner product h. We also apply this formula to examine a strictly convex 2-normed space. In the last section, we will discuss the 2-semi-inner product h(x, y)(z) in ℓ^p spaces. Moreover, ℓ_p space, equipped 2-norm, is strictly convex.

2 Main Result

2.1 A 2-semi-inner product on ℓ^p

In this subsection, we will discuss the angle between two subspaces of $(\ell^p, \|\cdot, \cdot\|_p)$. We first state the definition 2-semi inner product of ℓ^p spaces. Let $(\ell^p, \|\cdot, \cdot\|_p)$ be a 2-normed space with $1 \leq p < \infty$. Take a set $\{x, y, z\}$ in ℓ^p . We define the following mapping $h_p(x, z)(y)$ by

$$h_p(x,y)(z) = \frac{\|x,y\|_p^{2-p}}{2} \sum_j \sum_k \left(abs \left| \begin{array}{c} x_j & x_k \\ y_j & y_k \end{array} \right| \right)^{p-1} \left(sgn \left| \begin{array}{c} x_j & x_k \\ y_j & y_k \end{array} \right| \right) \left| \begin{array}{c} z_j & z_k \\ y_j & y_k \end{array} \right| \right)$$
(2.2)

Then we have the following result.

Theorem 2.1. The mapping $h_p(x, y)(z)$ in (2.2) defines a 2-semi-inner product on ℓ^p .

Proof. We will verify that $h_p(x, y)(z)$ satisfies the four properties of functional h and linear in terms of z.

- 1. Observe that $h_p(x, y)(x) = ||x, y||_p^2$.
- 2. By using the properties of determinants, we have

$$h_p(ax, y)(bz) = abh_p(x, y)(z).$$

3. Observe that

$$h_{p}(x,y)(x+z) = \left[\frac{\|x,y\|_{p}^{2-p}}{2} \sum_{j} \sum_{k} \left(abs \left| \begin{array}{c} x_{j} & x_{k} \\ y_{j} & y_{k} \end{array} \right| \right)^{p-1} \\ sgn \left| \begin{array}{c} x_{j} & x_{k} \\ y_{j} & y_{k} \end{array} \right| \left(\left| \begin{array}{c} x_{j} & x_{k} \\ y_{j} & y_{k} \end{array} \right| + \left| \begin{array}{c} z_{j} & z_{k} \\ y_{j} & y_{k} \end{array} \right| \right) \right] \\ = \|x,y\|_{p} + h_{p}(x,y)(y).$$

4. Observe that

$$\begin{aligned} |h_p(x,y)(z)| &\leq \frac{\|x,y\|_p^{2-p}}{2} \sum_j \sum_k \left(\operatorname{abs} \left| \begin{array}{c} x_j & x_k \\ y_j & y_k \end{array} \right| \right)^{p-1} \left(\operatorname{abs} \left| \begin{array}{c} z_j & z_k \\ y_j & y_k \end{array} \right| \right) \\ &\leq \|x,y\|_p^{2-p} \left[\left(\frac{1}{2} \sum_j \sum_k \left(\operatorname{abs} \left| \begin{array}{c} x_j & x_k \\ y_j & y_k \end{array} \right| \right)^p \right)^{\frac{p-1}{p}} \\ & \left(\frac{1}{2} \sum_j \sum_k \left(\operatorname{abs} \left| \begin{array}{c} z_j & z_k \\ y_j & y_k \end{array} \right| \right)^p \right)^{\frac{1}{p}} \right] \\ &= \|x,y\|_p \|y,z\|_p \,. \end{aligned}$$

5. Using the properties of determinants, $h_p(x, y)(z + z') = h_p(x, y)(z) + h_p(x, y)(z').$

Therefore, $h_p(x, y)(z)$ defines a 2-semi-inner product on ℓ^p .

Remark 2.2. Note that, for p = 2, we have $h_2(x, x)(z) = h_2(z, z)(x)$ and $h_2(x, y)(z) = h_2(y, x)(z)$. Hence, $h_2(x, y)(z)$ is the 2-inner product on ℓ^2 .

2.2 h_p -Orthogonality and h_p -angle

Let $(\ell^p, \|\cdot, \cdot\|_p)$ be a 2-normed space and let $\{a_1, a_2\}$ be a linearly independent set in ℓ^p . First, we write the norm defined by Gunawan in [6] as follows: $\|x\|_{h_p} := \left[\|x, a_1\|_p^2 + \|x, a_2\|_p^2\right]^{\frac{1}{2}}$, for every $x \in \ell^p$. Next, we can define a mapping that is obtained from the 2-semi inner product $h(\cdot, \cdot)(\cdot)$ by

$$[x, z]_{h_p} = h_p(x, a_1)(z) + h_p(x, a_2)(z)$$
(2.3)

where $x, z \in \ell^p$. Then, we obtain the proposition as follows:

Proposition 2.3. The mapping $[x, z]_{h_p}$ in (2.3) defines a semi-inner product on $(\ell^p, \|\cdot, \cdot\|_p)$.

- *Proof.* 1. Using the properties of 2-semi inner product, we have $[x, x]_{h_p} \ge 0$ and $[x, x]_{h_p} = 0$ if and only if x = 0.
 - 2. Using the properties of 2-semi inner product, we have $[\alpha x, \beta z]_{h_p} = h_p(\alpha x, a_1)(\beta z) + h(\alpha x, a_2)(\beta z) = \alpha \beta h_p(x, a_1)(z) + \alpha \beta h_p(x, a_2)(z) = \alpha \beta [x, z]_{h_p}.$

A Notion of Angle using a 2-Semi-inner Product...

- 3. We observe that $[x, y + z]_{h_p} = h_p(x, a_1)(y + z) + h_p(x, a_2)(y + z) = h_p(x, a_1)(y) + h_p(x, a_1)(z) + h_p(x, a_2)(y) + h_p(x, a_2)(z) = [x, y]_{h_p} + [x, z]_{h_p}.$
- 4. We observe that $|[x, z]_{h_p}| \leq |h_p(x, a_1)(z)| + |h_p(x, a_2)(z)|$. Using the properties of 2-semi inner product, we have $|[x, z]_{h_p}| \leq ||x, a_1||_p ||z, a_1||_p + ||x, a_2||_p ||z, a_2||_p$. Since $2ab \leq a^2 + b^2$ for any $a, b \geq 0$, we obtain $([x, z]_{h_p})^2 \leq (||x, a_1||_p^2 + ||x, a_2||_p^2)(||z, a_1||_p^2 + ||z, a_2||_p^2) = ||x||_{h_p}^2 ||z||_{h_p}^2$.

Remark 2.4. In general, the semi inner product $[\cdot, \cdot]_{h_p}$ does not satisfy the commutative property. For example, the space ℓ^1 with $a_1 = (1, 0, 0, ...)$ and $a_2 = (0, 1, 0, ...)$. Take x = (1, 2, 2, 0, ...) and z = (3, 1, -2, 0, ...). Clearly, $||x, a_1||_1 = 8$, $||x, a_2||_1 = 6$, $||z, a_1||_1 = 6$ and $||z, a_2||_1 = 10$. Therefore, $[x, z]_{h_1} = -2$ and $[z, x]_{h_1} = -10$. Hence $[x, z]_{h_p} \neq [z, x]_{h_p}$. If p = 2, then we can observe that $[x, z]_{h_2}$ is the inner product.

Next, by using the semi-inner product $[\cdot, \cdot]_{h_p}$, we introduce h_p -orthogonality and he angle between two nonzero vectors x and z on $(\ell^p, \|\cdot, \cdot\|_p)$ as follows:

Definition 2.5. Let $(\ell^p, \|\cdot, \cdot\|_p)$ be a 2-normed space. A vector x is h_p orthogonal to z, and we symbolize as $x \perp_{h_p} z$, if and only if $[x, z]_{h_p} = 0$.
Then, the angle between two nonzero vectors x and z is defined by $\Theta_{h_p}(x, z)$ such that

$$\Theta_{h_p}(x,z) := \arccos \frac{[x,z]_{h_p}}{\|x\|_{h_p} \|z\|_{h_p}}.$$

Note that $\Theta_{h_p}(x, z) = \frac{1}{2}\pi$ if and only if $[x, z]_{h_p} = 0$ or $x \perp_{h_p} z$. Since $|[x, z]_{h_p}| \le |x||_{h_p} ||z||_{h_p}, \pi \le \Theta_{h_p}(x, z) \le \pi$.

The angle $\Theta_{h_p}(\cdot, \cdot)$ has the following properties.

Proposition 2.6. Let $(\ell^p, \|\cdot, \cdot\|_p)$ be a 2-normed space. The angle $\Theta_{h_p}(x, z)$ satisfies the following properties:

- (a) If x and z are of the same direction, then $\Theta_{h_p}(x, z) = 0$; if x and z are of the opposite direction, then $\Theta_{h_p}(x, z) = \pi$ (part of parallelism property).
- (b) $\Theta_{h_p}(\alpha x, \beta z) = \Theta_{h_p}(x, z)$ if $\alpha \beta > 0$; $\Theta_{h_p}(\alpha x, \beta z) = \pi \Theta_{h_p}(x, z)$ if $\alpha \beta < 0$ (homogeneity property).
- (c) If $x_n \to x$ (in norm), then $\Theta_{h_p}(x_n, z) \to \Theta_{h_p}(x, z)$ (part of continuity property).

- Proof. (a) Let z = kx for an arbitrary nonzero vector x in ℓ^p and $k \in \mathbb{R} \{0\}$. We have $\Theta_{h_p}(x, z) = \arccos \frac{[kx, x]_{h_p}}{\|x\|_{h_p} \|kx\|_{h_p}} = \arccos \frac{k\|x\|_{h_p}^2}{|k|\|x\|_{h_p}^2}$. Hence, $\Theta_{h_p}(x, z) = 0$ for k > 0 and $\Theta_{h_p}(x, z) = \pi$ for k < 0.
- (b) Let $\alpha, \beta \in \mathbb{R} \{0\}$. Observe that $\Theta_{h_p}(\alpha x, \beta z) = \arccos \frac{\alpha \beta[x, z]_{h_p}}{|\alpha \beta| ||x||_{h_p} ||y||_{h_p}}$.
- (c) If $x_k \to x$ (in norm $\|\cdot\|_{h_p}$), then $|[x, z_n z]_{h_p}| \le \|x\|_{h_p} \|z_n z\|_{h_p} \to 0$. Observe that $[x, z_n - z]_{h_p} = [x, z_n]_{h_p} - [x, z]_{h_p}$. We have $[x, z_n]_{h_p} \to [x, z]_{h_p}$. Hence, $\Theta_{h_p}(x, z_n) \to \Theta_{h_p}(x, z)$, as desired.

Remark 2.7. From Remark 2.4, we can conclude that the angle $\Theta_{h_p}(\cdot, \cdot)$ does not satisfy the symmetry property. Likewise, the g-angle does not satisfy the continuity property. For instance, take $z_n = (\frac{1}{n}, 2, 0, ...), z = (0, 2, 0, ...), and x = (2, 2, 0, ...) in \ell^1$. We observe that $\cos \Theta_{h_1}(x, z_n) = 0$ for any $n \in \mathbb{N}$, but $\cos \Theta_{h_1}(x, z) \neq 0$.

3 Further Results

Using the 2-semi-inner product h, we define the angle between subspaces $U = \operatorname{span}\{u, w\}$ and $V = \operatorname{span}\{v, w\}$ of the 2-normed space, as follows.

Definition 3.1. If $U = span\{u, w\}$ and $V = span\{v, w\}$ are 2-dimensional subspaces of $(X, \|\cdot, \cdot\|)$ that intersects on 1-dimensional subspace $W = span\{w\}$, then the angle between U and V is defined by $\Theta_h(U, V)$ with $\cos \Theta_h(U, V) = \frac{h(u,w)(v)}{\|u,w\|\|v,w\|}$.

Remark 3.2. Using Properties 4 in 2-semi-inner product h, we have $-\pi \leq \Theta_{h_p}(U, V) \leq \pi$. This fact shows that Definition 3.1 makes sense.

For example, in ℓ^1 , take $u = (3, 1, 0, \cdots)$, $v = (2, 1, 0, \cdots)$, and $w = (1, -1, 0, \cdots)$. Using formula in Definition 3.1, we obtain $\Theta_{h_1}(U, V) = 0$.

Next, we will show $(\ell^p, \|\cdot, \cdot\|)$ is strictly convex 2-normed space. First, we recall definition of strictly convex 2-normed space as follows:

Definition 3.3. [13] Let $x, y \in (X, \|\cdot, \cdot\|)$ be non-zero elements and let V(x, y) denote the subspace of X generated by the vectors x and y. The space X is strictly convex if $\|x, y\| = \|y, z\| = \left\|\frac{x+y}{2}, z\right\| = 1$ and $z \notin V(x, y)$, for $x, y, z \in X$, imply x = y.

Then Franić [2] give the connection between strictly convex 2-normed space and 2-semi-inner product in following theorem.

Theorem 3.4. Let $[\cdot, \cdot|\cdot]$ be a 2-semi-inner product compatible with a 2-norm on $(X, \|\cdot, \cdot\|)$. X is strictly convex if and only if $[x, y|z] = \|x, z\| \|y, z\|$ and $z \notin V(x, y)$ for $x, y, z \in X$ implies y = ax, for some a > 0.

Next, we obtain the following result.

Theorem 3.5. Let $(\ell^p, \|\cdot, \cdot\|_p)$ be a 2-normed space where $1 \le p < \infty$ and $\Theta_{h_p}(U, V)$ be the angle between two subspaces $U = span\{u, w\}$ and $V = span\{v, w\}$ in ℓ^p . Then the following statements are equivalent: (1) ℓ^p is strictly convex.

(2) If $\cos \Theta_{h_p}(U, V) = 1$ where $w \notin span\{u, v\}$, then u = av for some a > 0.

Proof. Let us first prove that (1) implies (2). Suppose ℓ^p is strictly convex. If $\cos \Theta_{h_p}(U, V) = 1$, $w \notin span\{u, v\}$ then $h_p(u, w)(v) = ||u, w||_p ||v, w||_p, w \notin span\{u, v\}$. Since $h_p(u, w)(v)$ is a 2-semi inner product on ℓ^p , then u = av for some a > 0 by Theorem 3.4. Next, we show that (2) implies (1). Assume $\cos \theta_{h_p}(U, V) = 1$ where $w \notin span\{u, v\}$. Then u = av for some a > 0. Suppose $h_p(u, w)(v) = ||u, w||_p ||v, w||_p, w \notin span\{u, v\}$. By Definition 2.2, we obtain $\cos \Theta_{h_p}(U, V) = 1$, $w \notin span\{u, v\}$ and by assumption, u = av, for some a > 0. Finally, we have $h_p(u, w)(v) = ||u, w||_p ||v, w||_p, w \notin span\{u, v\}$ implies u = av, for some a > 0. According to Theorem 3.4, ℓ^p is a strictly convex 2-normed space.

4 Conclusion

In this work, we have formulated the the 2-semi-inner product h on ℓ^p spaces. Using this formula, we have defined the h_p -orthogonality and the h_p -angle between two vectors and have discussed theirs properties. Moreover, we have defined the h_p -angle between $U = span\{u, w\}$ and $V = span\{v, w\}$ in ℓ^p . We also have proved ℓ_p space as a strictly convex 2-normed space.

5 Acknowledgments

The research is supported by Fundamental Research Program 2024 No. 02035/UN4.22.2/PT.01.03/2024.

References

- K. Anevska, R. Malčeski, "Generalization on parallelepiped equality in 2-normed space", Int. J. Pure Appl. Sci. Tech., 22, no. 2, (2014), 41–49.
- [2] I. Franič, "Two Results in 2-Normed Spaces", Glas. Mat. Ser. III, 17, no. 37, (1982), 271–275.
- [3] S. Gähler, "Lineare 2-normierte räume", Math. Nachr. 28, (1964), 1–43.
- [4] C. Diminnie, S. Gähler, A. White, "2-inner product spaces", Demonstratio Math. 6, (1973), 525–536.
- [5] C. Diminnie, S. Gähler, A. White, "Strictly convex linear 2-normed spaces", Math. Nachr., 59, (1974), 319–324.
- [6] H. Gunawan, "The space of *p*-summable sequences and its natural *n*-norm", *Bull. Austral. Math. Soc.*. **64**, (2001) 137–147.
- [7] H. Gunawan, M. Mashadi, "On finite-dimensional 2-normed space", Soochow J. Math., 27, (2001), 321–329.
- [8] H. Gunawan, O. Neswan (2005), "On angles between subspaces of inner product spaces, J. Math. Fund. Sci., 11, (2005), 129–135.
- [9] H. Gunawan, O. Neswan, W. Setya-Budhi, "A formula for angles between two subspaces of inner product spaces", *Beitr. Algebra Geom.* 46, no. 2, (2005), 311–320.
- [10] M. Nur, H. Gunawan, "A note on the g-angle between subspaces of a normed space", Aequationes Math., 95, (2021), 309–318.
- [11] M. Nur, M. Bahri, A. Islamiyati, H. Batkunde, A new semi-inner product and p_n -angle in the space of *p*-summable sequences, *Mathematics*, **11**, (2023), 3139.
- [12] M. Nur, M. Idris, Firman, "Angle in the space of p-summable sequences", AIMS Mathematics, 7, no. 2, (2022), 2810–2819.
- [13] A.H. Siddiqi, S.M. Rizwi, "2-Semi-inner spaces II", Math. Japon, 20, (1976), 391–397.