International Journal of Mathematics and Computer Science Volume **20**, Issue no. 2, (2025), 539–542 DOI: https://doi.org/10.69793/ijmcs/02.2025/manimaran

Solving the Stochastic Delay Differential Equation by using Taylor's and Modified Euler's Methods

N. Racshitha, R. Manimaran

Department of Mathematics Faculty of Engineering and Technology SRM Institute of Science and Technology Vadapalani Campus Chennai, India

email: rn3002@srmist.edu.in, manimarr1@srmist.edu.in

(Received November 28, 2024, Accepted February 8, 2025, Published February 9, 2025)

Abstract

In this paper, we solve the Stochastic Delay Differential Equation by using Taylor's and Modified Euler's Methods. Moreover, we derive numerical examples by using Python software.

1 Introduction

We consider the Stochastic Delay Differential Equation (SDDE)

$$dA(t) = f(A(t), A(t-r))dt + g(A(t))dW(t), t \ge 0, t \in [-r, 0]$$
(1.1)

where f(A(t), A(t-r)), g(A(t)) is the drift and diffusion term, dW(t) is a Weiner process and r > 0 is the delay term.

Key words and phrases: Stochastic Delay Differential Equation, Taylor's Method and Modified Euler's Method.

AMS (MOS) Subject Classifications: 65C30.The corresponding author is R. Manimaran.ISSN 1814-0432, 2025, https://future-in-tech.net

2 Stochastic Delay Differential Equation

2.1 Taylor's Method

Expanding equation (1.1) by using Taylor's expansion of the first order $A(t_{n+1})$

$$\begin{split} A(t_n+1) &= A(t_n) + f(A(t_n), A(t_n-r))h + g(A(t_n))\Delta W_n, \\ \text{where } h \text{ is the step size } (t_{n+1} = t_n + h) \text{ and } \Delta W_n \text{ is the Weiner process} \\ \text{increment } (\Delta W_n = W(t_{n+1}) - W(t_n)). \text{ For } t_n > 0, \\ x(t_n-r) &\approx A(t_k) + \frac{t_n - r - t_k}{t_{k+1} - t_k} (A(t_{k+1}) - A(t_k)), \text{ where } t_k \leq t_n - r < t_{k+1}. \text{ Then,} \\ \text{the discretized equation is } A_{n+1} = A_n + hf(A_n, A_{n-r/h}) + g(A_n)\Delta W_n \end{split}$$

3 Modified Euler Method (MEM)

Expand equation (1.1) by using the MEM and define the domain $t \in [t_0, T]$, step size h, and delay r.

Use the current value $A(t_n)$ and $A(t_n - r)$ to predict $A_p(t_{n+1})$. $A_p(t_{n+1}) = A(t_n) + hf(A(t_n), A(t_n - r)) + g(A(t_n))\Delta W_n$ where $\Delta W_n = W(t_{n+1}) - W(t_n)$ and $\Delta W_n \approx \mathcal{N}(0, \sqrt{h})$ By using the MEM which averages the drift and stochastic terms, we get $A(t_{n+1}) = A(t_n) = \frac{h}{2}[f(A(t_n), A(t_n - r)) + f(A_p(t_{n+1}, A(t_{n+1} - r))] + g(A(t_n))\Delta W_n.$ Increment the step size $t_{n+1} = t_n + h$ and repeat for all n = 0, 1, 2, ..., N - 1until the result reaches the final time T.

4 Numerical Results

Example 1: dA(t) = (A(t) - A(t - r))dt + dW(t), where r = 0.1, f(A(t) - A(t - r)) = (A(t) - A(t - r)), g(A(t)) = 1 (Constant diffusion). With initial condition A(t) = 0, for $t \in [-r, 0]$ and numerically approximating the solution for $t \in [0, T]$ using a small step size h = 0.01, time interval [0, T] = [0, 2] and delay r = 0.1 by using Taylor's method.

Figure 1 shows the oscillating trajectory of A(t) due to the interaction of drift and the randomness from the Weiner process.

Example 2: $dA(t) = (-A(t) + A(t-r))dt + \sigma A(t)dW(t)$, with $A(t) = e^{-t}t$ for $t \in [-r, 0]$ and numerically approximate the solution for delay r = 0.5, step size h = 0.01, simulation time T = 2 and $\sigma = 0.1$ by using MEM.

The MEM efficiently balances accuracy by combining predictions and corrections. Figure 2 shows a smooth but realistic trajectory incorporating both deterministic delay effect and stochastic noise.

540

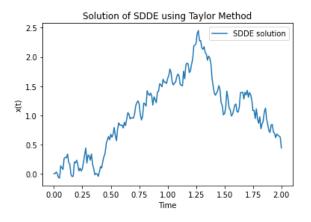


Figure 1: Indicating the numerical solution by using Taylor's method

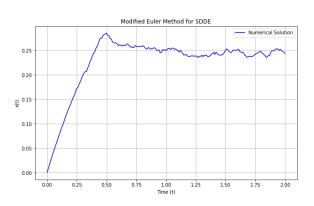


Figure 2: Indicating the numerical solution by using MEM

References

- Yang Li et al., "New Order 2.0 Simplified Weak Itô–Taylor Symmetrical Scheme for Stochastic Delay Differential Equations", Symmetry, 16, no. 6, (2024), 685.
- [2] Paweł Przybyłowicz, Yue Wu, Xinheng Xie, "On approximation of solutions of stochastic delay differential equations via randomized Euler scheme", Applied Numerical Mathematics, 197, (2024), 143–163.
- [3] Falah Hassan Sarhan, Hassan Khaleel Ismail, "Approximation Solutions of Backward Fuzzy Stochastic Differential Equations", International Journal of Mathematics and Computer Science, 18, no. 4, (2023), 647–654.