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Abstract

In this paper, we solve the Stochastic Delay Differential Equation

by using Taylor’s and Modified Euler’s Methods. Moreover, we derive

numerical examples by using Python software.

1 Introduction

We consider the Stochastic Delay Differential Equation (SDDE)

dA(t) = f(A(t), A(t− r))dt + g(A(t))dW (t), t ≥ 0, t ∈ [−r, 0] (1.1)

where f(A(t), A(t − r)), g(A(t)) is the drift and diffusion term, dW (t) is a
Weiner process and r > 0 is the delay term.
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2 Stochastic Delay Differential Equation

2.1 Taylor’s Method

Expanding equation (1.1) by using Taylor’s expansion of the first order
A(tn+1)
A(tn + 1) = A(tn) + f(A(tn), A(tn − r))h + g(A(tn))∆Wn,

where h is the step size (tn+1 = tn + h) and ∆Wn is the Weiner process
increment (∆Wn = W (tn+1) −W (tn)). For tn > 0,
x(tn−r) ≈ A(tk)+ tn−r−tk

tk+1−tk
(A(tk+1)−A(tk)), where tk ≤ tn−r < tk+1. Then,

the discretized equation is An+1 = An + hf(An, An−r/h) + g(An)∆Wn

3 Modified Euler Method (MEM)

Expand equation (1.1) by using the MEM and define the domain t ∈ [t0, T ],
step size h, and delay r.
Use the current value A(tn) and A(tn − r) to predict Ap(tn+1).
Ap(tn+1) = A(tn) + hf(A(tn), A(tn − r)) + g(A(tn))∆Wn

where ∆Wn = W (tn+1) −W (tn) and ∆Wn ≈ N (0,
√
h)

By using the MEM which averages the drift and stochastic terms, we get
A(tn+1) = A(tn) = h

2
[f(A(tn), A(tn−r))+f(Ap(tn+1, A(tn+1−r))]+g(A(tn))∆Wn.

Increment the step size tn+1 = tn + h and repeat for all n = 0, 1, 2, .., N − 1
until the result reaches the final time T.

4 Numerical Results

Example 1: dA(t) = (A(t) − A(t− r))dt + dW (t), where r = 0.1, f(A(t) −
A(t− r)) = (A(t) −A(t− r)), g(A(t)) = 1 (Constant diffusion).
With initial condition A(t) = 0, for t ∈ [−r, 0] and numerically approximating
the solution for t ∈ [0, T ] using a small step size h = 0.01, time interval
[0, T ] = [0, 2] and delay r = 0.1 by using Taylor’s method.

Figure 1 shows the oscillating trajectory of A(t) due to the interaction of
drift and the randomness from the Weiner process.
Example 2: dA(t) = (−A(t) + A(t− r))dt + σA(t)dW (t), with A(t) = e−t

for t ∈ [−r, 0] and numerically approximate the solution for delay r = 0.5,
step size h = 0.01, simulation time T = 2 and σ = 0.1 by using MEM.
The MEM efficiently balances accuracy by combining predictions and correc-
tions. Figure 2 shows a smooth but realistic trajectory incorporating both
deterministic delay effect and stochastic noise.
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Figure 1: Indicating the numerical solution by using Taylor’s method

Figure 2: Indicating the numerical solution by using MEM
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