International Journal of Mathematics and Computer Science Volume **20**, Issue no. 2, (2025), 663–666 DOI: https://doi.org/10.69793/ijmcs/02.2025/kholboev

On the impact of exponential functors on some types of continuous mappings

¹V. I. Romanovskiy Institute of Mathematics Uzbekistan Academy of Sciences University street, 9, Olmazor district Tashkent, 100174, Uzbekistan

> ²Fergana State University Murabbiylar street, 19, Fergana, 150100, Uzbekistan

³Kimyo International University in Tashkent str. Usman Nasyr 156 100121, Tashkent, Uzbekistan

email: bakhodir.kholboev@gmail.com

(Received February 22, 2025, Accepted March 19, 2025, Published April 3, 2025)

Abstract

The work is devoted to behaviors and some applied fields in a discrete dynamical system in a S^3 simplex and the study of the motion of the trajectory using simulation, instead of four-dimensional space drawing in a three-dimensional space.

Key words and phrases: Exponential space, permutation degree, almost open mapping, Vietoris topology, pseudo-open mapping.
AMS (MOS) Subject Classifications: 54B20, 54A25
ISSN 1814-0432, 2025, https://future-in-tech.net

1 Introduction

Let X be a T_1 topological space. The set of all non-empty closed subsets of X is denoted by exp X. The topology on exp X generated by the basis

$$O\langle U_1, \dots, U_n \rangle = \{F \in \exp X : F \subset \bigcup_{i=1}^n U_i, F \cap U_i \neq \emptyset, \forall i\}$$

is called the Vietoris topology. The space $(\exp X, \text{Vietoris topology})$ is called the hyperspace of X.

A mapping $f: X \to Y$ is called almost-open if, for each $y \in Y$, there exists $x \in f^{-1}(y)$ such that for every neighborhood U of x, the image f(U) is a neighborhood of y.

The purpose of this paper is to investigate how the functor exp_n influences almost-open and pseudo-open mappings. Key results presented here extend previous work by Arhangel'skii [1], Kaygorodov [6], Ljuisa [7], Fedorchuk and Filippov [2], Nagata [3], and Koussaour [8] on general mappings, as well as Lin's studies on point-countable covers [4]. For example, we show that:

For the exponential functor exp_n , the mapping $exp_n f: SP^n X \to SP^n Y$ is almost-open and pseudo-open whenever $f: X \to Y$ is almost-open or pseudo-open, respectively.

By establishing these results, we contribute to a broader understanding of functorial transformations in topology and their implications for continuous mappings. This research opens avenues for further exploration of functorial interactions in generalized topological settings.

2 Main results

Theorem 2.1. The mapping $exp_n f: exp_n X \to exp_n Y$ is almost-open for every almost-open mapping $f: X \to Y$.

Proof. Let $f: X \to Y$ be an almost-open and surjective mapping. We take an arbitrary element $F \in \exp_n Y$. Let us say $F = \{y_1, y_2, \ldots, y_n\}$. By the normality of the functor $\exp_n: Comp \to Comp$ the mapping $\exp_n f: \exp_n X \to \exp_n Y$ is also surjective. We show that this mapping is almost-open.

Since $f: X \to Y$ is almost-open, for every $y_i \in F$ there exists $x_i \in X$ such that the image f(W) of an arbitrary neighborhood W of x_i is a neighborhood of y_i , as well. Put $C = \{x_1, x_2, \ldots, x_n\}$. Then clearly $(\exp_n f)(C) =$ f(C) = F, or equivalently $C \in (\exp_n f)^{-1}(F)$. Now, consider an arbitrary basic neighborhood $\langle U_1, U_2, \ldots, U_n \rangle$ of C in $\exp_n X$, where U_1, U_2, \ldots, U_n

664

are open neighborhoods of x_1, x_2, \ldots, x_n , respectively. We must show that $F \in Int((\exp_n f)(\langle U_1, U_2, \dots, U_n \rangle)).$

First of all, note that

$$(\exp_n f)(\langle U_1, U_2, \dots, U_n \rangle) = \langle f(U_1), f(U_2), \dots, f(U_n) \rangle.$$

By Lemma 2.3 in [5], we have

$$F \in \langle Int(f(U_1)), Int(f(U_2)), \dots, Int(f(U_n)) \rangle \subset$$
$$\subset Int(\langle f(U_1), f(U_2), \dots, f(U_n) \rangle) = Int((\exp_n f)(\langle U_1, U_2, \dots, U_n \rangle)).$$
orem 2.1 follows.

Theorem 2.1 follows.

Theorem 2.2. The mapping $exp_n f: exp_n X \to exp_n Y$ is pseudo-open for every pseudo-open mapping $f: X \to Y$.

Proof. Let $f: X \to Y$ be a pseudo-open and surjective mapping. We take an arbitrary element $F \in \exp_n Y$. Let us say $F = \{y_1, y_2, \dots, y_n\}$. By the normality of the functor $\exp_n: Comp \to Comp$, the mapping $\exp_n f: \exp_n X \to Comp$ $\exp_n Y$ is also surjective. We show that this mapping is pseudo-open.

Since $f: X \to Y$ is pseudo-open, for every $y_i \in F$ there exists $x_i^j \in X$, $j \in A$, such that the image f(W) of an arbitrary neighborhood W of x_i^j is a neighborhood of y_i as well. Put $C^j = \{x_1^j, x_2^j, \ldots, x_n^j\}$. Then clearly $(\exp_n f)(C^j) = f(C^j) = F$, or equivalently $C^j \in (\exp_n f)^{-1}(F)$.

Now, consider an arbitrary basic neighborhood $\langle U_1, U_2, \ldots, U_n \rangle$ of C^j in $\exp_n X$, where U_1, U_2, \ldots, U_n are open neighborhoods of $x_1^j, x_2^j, \ldots, x_n^j$ respectively. We must show that $F \in Int((\exp_n f)(\langle U_1, U_2, \ldots, U_n \rangle))$.

First of all, note that $(\exp_n f)(\langle U_1, U_2, \dots, U_n \rangle) = \langle f(U_1), f(U_2), \dots, f(U_n) \rangle.$ Consequently,

$$\langle Int(f(U_1)), Int(f(U_2)), \dots, Int(f(U_n)) \rangle \subset Int(\langle f(U_1), f(U_2), \dots, f(U_n) \rangle).$$

Since $y_i \in Int(f(U_i))$ for i = 1, 2, ..., n, we obtain

 $F \in \langle Int(f(U_1)), Int(f(U_2)), \dots, Int(f(U_n)) \rangle \subset Int(\langle f(U_1), f(U_2), \dots, f(U_n) \rangle) =$

$$= Int((\exp_n f)(\langle U_1, U_2, \dots, U_n \rangle)).$$

Theorem 2.2 follows.

665

References

- A. V. Arhangelskii, Mappings and spaces, Russian Math. Surveys, 21,(1966), 115–162.
- [2] V. V. Fedorcuk, Covariant functors in a category of compacta, absolute retracts and manifolds, Uspekhi Mat. Nauk, 36, no. 3 (219), (1981), 177–195, 256 (in Russian).
- [3] J. Nagata, On pseudo-open mappings, Mathematica Scandinavica, 34, no. 1, (1974), 55–68.
- [4] S. Lin, Point-Countable Covers and Sequence-Covering Mappings, Chinese Science Press, Beijing, 2002 (in Chinese).
- [5] E. Michael, Topologies on spaces of subsets, Transactions of the American Mathematical Society, **71**, no. 2, (1951), 152–182.
- [6] Ivan Kaygorodov, Abror Khudoyberdiyev, Zarina Shermatova, Transposed Poisson structures on Virasoro-type algebras, Journal of Geometry and Physics, 207, (2025), 105356.
- [7] Ljubiša D. R. Kočinac, Farkhod G. Mukhamadiev, Anvar K. Sadullaev, Some classes of topological spaces and the space of G-permutation degree, Georgian Math. J., (2023). https://doi.org/10.1515/gmj-2023-2080
- [8] M. Koussour, S. Bekov, A. Syzdykova, S. Muminov, I. Ibragimov, J. Rayimbaev, Observational constraints on a generalized equation of state model, Physics of the Dark, 47, (2025), 101799. https://doi.org/10.1016/j.dark.2024.101799

666