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Abstract

The work is devoted to behaviors and some applied fields in a

discrete dynamical system in a S3 simplex and the study of the motion

of the trajectory using simulation, instead of four-dimensional space

drawing in a three-dimensional space.
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1 Introduction

Let X be a T1 topological space. The set of all non-empty closed subsets of
X is denoted by expX . The topology on expX generated by the basis

O〈U1, . . . , Un〉 = {F ∈ expX : F ⊂
⋃n

i=1
Ui, F ∩ Ui 6= ∅, ∀i}

is called the Vietoris topology. The space (expX,Vietoris topology) is called
the hyperspace of X .

A mapping f : X → Y is called almost-open if, for each y ∈ Y , there
exists x ∈ f−1(y) such that for every neighborhood U of x, the image f(U)
is a neighborhood of y.

The purpose of this paper is to investigate how the functor expn influences
almost-open and pseudo-open mappings. Key results presented here extend
previous work by Arhangel’skii [1], Kaygorodov [6], Ljuisa [7], Fedorchuk and
Filippov [2], Nagata [3], and Koussaour [8] on general mappings, as well as
Lin’s studies on point-countable covers [4]. For example, we show that:

For the exponential functor expn, the mapping expnf : SP
nX → SP nY

is almost-open and pseudo-open whenever f : X → Y is almost-open or
pseudo-open, respectively.

By establishing these results, we contribute to a broader understanding of
functorial transformations in topology and their implications for continuous
mappings. This research opens avenues for further exploration of functorial
interactions in generalized topological settings.

2 Main results

Theorem 2.1. The mapping expnf : expnX → expnY is almost-open for

every almost-open mapping f : X → Y .

Proof. Let f : X → Y be an almost-open and surjective mapping. We take an
arbitrary element F ∈ expn Y . Let us say F = {y1, y2, . . . , yn}. By the nor-
mality of the functor expn : Comp → Comp the mapping expn f : expn X →
expn Y is also surjective. We show that this mapping is almost-open.

Since f : X → Y is almost-open, for every yi ∈ F there exists xi ∈ X

such that the image f(W ) of an arbitrary neighborhood W of xi is a neigh-
borhood of yi, as well. Put C = {x1, x2, . . . , xn}. Then clearly (expn f)(C) =
f(C) = F , or equivalently C ∈ (expn f)

−1(F ). Now, consider an arbitrary
basic neighborhood 〈U1, U2, . . . , Un〉 of C in expn X , where U1, U2, . . . , Un
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are open neighborhoods of x1, x2, . . . , xn, respectively. We must show that
F ∈ Int((expn f)(〈U1, U2, . . . , Un〉)).

First of all, note that

(expn f)(〈U1, U2, . . . , Un〉) = 〈f(U1), f(U2), . . . , f(Un)〉.

By Lemma 2.3 in [5], we have

F ∈ 〈Int(f(U1)), Int(f(U2)), . . . , Int(f(Un))〉 ⊂

⊂ Int(〈f(U1), f(U2), . . . , f(Un)〉) = Int((expn f)(〈U1, U2, . . . , Un〉)).

Theorem 2.1 follows.

Theorem 2.2. The mapping expnf : expnX → expnY is pseudo-open for

every pseudo-open mapping f : X → Y .

Proof. Let f : X → Y be a pseudo-open and surjective mapping. We take an
arbitrary element F ∈ expn Y . Let us say F = {y1, y2, . . . , yn}. By the nor-
mality of the functor expn : Comp → Comp, the mapping expn f : expn X →
expn Y is also surjective. We show that this mapping is pseudo-open.

Since f : X → Y is pseudo-open, for every yi ∈ F there exists x
j

i ∈ X ,
j ∈ A, such that the image f(W ) of an arbitrary neighborhood W of xj

i

is a neighborhood of yi as well. Put Cj = {xj
1
, x

j
2
, . . . , xj

n}. Then clearly
(expn f)(C

j) = f(Cj) = F , or equivalently Cj ∈ (expn f)
−1(F ).

Now, consider an arbitrary basic neighborhood 〈U1, U2, . . . , Un〉 of Cj

in expnX , where U1, U2, . . . , Un are open neighborhoods of x
j
1
, x

j
2
, . . . , xj

n,
respectively. We must show that F ∈ Int((expn f)(〈U1, U2, . . . , Un〉)).

First of all, note that (expn f)(〈U1, U2, . . . , Un〉) = 〈f(U1), f(U2), . . . , f(Un)〉.
Consequently,

〈Int(f(U1)), Int(f(U2)), . . . , Int(f(Un))〉 ⊂ Int(〈f(U1), f(U2), . . . , f(Un)〉).

Since yi ∈ Int(f(Ui)) for i = 1, 2, . . . , n, we obtain

F ∈ 〈Int(f(U1)), Int(f(U2)), . . . , Int(f(Un))〉 ⊂ Int(〈f(U1), f(U2), . . . , f(Un)〉) =

= Int((expn f)(〈U1, U2, . . . , Un〉)).

Theorem 2.2 follows.
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