International Journal of Mathematics and Computer Science Volume **20**, Issue no. 2, (2025), 495–499 DOI: https://doi.org/10.69793/ijmcs/02.2025/jairo

An Application of Hypergeometric Functions in the Evaluation of a Gradshteyn-Ryzhik Integral

Juan Carlos López Carreño¹, Rosalba Mendoza Suárez¹, Jairo Alonso Mendoza S.²

¹Department of Mathematics Faculty of Basic Sciences University of Pamplona Pamplona, Colombia

²Department of Physics Faculty of Basic Sciences University of Pamplona Pamplona, Colombia

email: jairoam@unipamplona.edu.co

(Received December 6, 2024, Accepted January 7, 2025, Published January 9, 2025)

Abstract

In this article, we evaluate an interesting integral from the famous book of integrals by Gradshteyn and Ryzhik [5], which, in its seventh edition, includes an incorrect result. We derive the correct value. Moreover, we highlight the application of the hypergeometric functions formalism in the evaluation of this integral.

1 Introduction

The tables of series and integrals have been used over time. Among these, we can mention [1], [2], [3] [4]. After a search, we found that the table of

Keywords and phrases: Integral, hypergeometric functions. AMS (MOS) Subject Classifications: 33D45, 33C45. ISSN 1814-0432, 2025, https://future-in-tech.net integrals by Gradshteyn and Ryzhik (see [5]) is the most popular among users of the scientific community. On page 531, section integral 4.224.13 of [5], the following integral appears:

$$\int_{0}^{\frac{\pi}{2}} \ln(1+2a\sin x+a^2)dx = \sum_{k=0}^{\infty} \frac{2^{2k}(k!)^2}{(2k+1)(2k+1)!!} \left(\frac{2a}{1+a^2}\right)^{2k+1}, \ a^2 \le 1$$
(1.1)

there is an error in the previous formula, as it can be observed that the series is not convergent.

The objective of this article is to derive a correct formula that expresses the integral in (1.1) as a convergent series.

2 Evaluating the integral (1.1)

Theorem 2.1. If $a^2 \leq 1$, the following integral formula holds:

$$\int_0^{\frac{\pi}{2}} \ln(1+2a\sin x+a^2) dx = \sum_{k=0}^{\infty} \frac{2^k k!}{(2k+1)\cdot(2k+1)!!} \cdot \left(\frac{2a}{1+a^2}\right)^{2k+1}$$

Demostration 2.1. Let

$$I(a) = \int_0^{\frac{\pi}{2}} \ln(1 + 2a\sin x + a^2) dx.$$

The expression inside the logarithm of the previous integral can be written as a product of simpler terms. To achieve this, we note that

$$1 + 2a\sin x + a^2 = (1 + a^2)\left(1 + \frac{2a}{1 + a^2}\sin x\right)$$

where from,

$$I(a) = \int_0^{\frac{\pi}{2}} \ln\left[(1+a^2) \left(1 + \frac{2a}{1+a^2} \sin x \right) \right] dx,$$

we use the logarithm property to split the integral into two parts as follows:

$$I(a) = \int_0^{\frac{\pi}{2}} \ln(1+a^2) dx + \int_0^{\frac{\pi}{2}} \ln(1+b\sin x) dx,$$

where

$$b = \frac{2a}{1+a^2}.$$

496

If we denote the second integral on the right-hand side of the previous equality by F(b), we have that:

$$I(a) = \frac{\pi}{2}\ln(1+a^2) + F(b).$$
 (2.2)

To evaluate the integral F(b), we use the power series expansion of $\log(1+z)$:

$$\log(1+z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{n+1}}{n+1}, \ |z| < 1,$$

with $z = b \sin x$ and so

$$F(b) = \int_0^{\frac{\pi}{2}} \ln(1+z) dz = \int_0^{\frac{\pi}{2}} \sum_{n=0}^{\infty} \frac{(-1)^n b^{n+1} \sin^{n+1} x}{n+1} dx.$$

Now, the uniform convergence of the above power series allows us to interchange the integral and the summation as follows:

$$F(b) = \sum_{n=0}^{\infty} \frac{(-1)^n b^{n+1}}{n+1} \int_0^{\frac{\pi}{2}} \sin^{n+1} x dx,$$

an expansion that we can rewrite in the form:

$$F(b) = \sum_{k=0}^{\infty} \frac{b^{2k+1}}{2k+1} \int_0^{\frac{\pi}{2}} \sin^{2k+1} x dx - \sum_{k=0}^{\infty} \frac{b^{2k+2}}{2k+2} \int_0^{\frac{\pi}{2}} \sin^{2k+2} x dx.$$
(2.3)

Using the well-known Wallis formulas [6] :

$$\int_0^{\frac{\pi}{2}} \sin^{2k+1} x dx = \frac{2^k k!}{(2k+1)!!}$$

and

$$\int_0^{\frac{\pi}{2}} \sin^{2k} x dx = \frac{(2^k + 1)!!\pi}{2^{k+1}(2k+1)k!}.$$

The equality (2.3) can be written as

$$F(b) = \sum_{k=0}^{\infty} \frac{2^k k! \, b^{2k+1}}{(2k+1) \cdot (2k+1)!!} - \frac{\pi b^2}{4} \sum_{k=0}^{\infty} \frac{(2k+3)!! \, b^{2k}}{2^{k+1}(k+1)(k+1)!(2k+3)}.$$
(2.4)

Therefore, from (2.2), (2.3), and (2.4), it follows that:

$$I(a) = \sum_{k=0}^{\infty} \frac{2^k k!}{(2k+1) \cdot (2k+1)!!} \cdot \left(\frac{2a}{1+a^2}\right)^{2k+1}.$$

Proposition 2.2. For $b = \frac{2a}{1+a^2}$, we have

$$G(b) := -\frac{\pi b^2}{4} \sum_{k=0}^{\infty} \frac{(2k+3)!! \, b^{2k}}{2^{k+1}(k+1)(k+1)!(2k+3)} = \frac{\pi}{2} \log(1+a^2). \tag{2.5}$$

Demostration 2.2. Recall that the Pochhammer symbol $(\alpha)_n$, defined as:

$$(\alpha)_n := \alpha(\alpha+1)(\alpha+2)\cdots(\alpha+n-1), \ n \in \mathbb{N},$$

$$(\alpha)_0 := 1,$$

satisfies the following properties:

$$(\alpha)_{n+1} = \alpha(\alpha+1)_n$$

$$(1)_n = n!$$

$$(\alpha)_{2n} = 2^{2n} \left(\frac{\alpha}{2}\right)_n \left(\frac{\alpha+1}{2}\right)_n,$$

the coefficient in the power series shown in (2.5) can be written as:

$$\frac{(2k+3)!!}{2^{k+1}(k+1)(k+1)!(2k+3)} = \frac{1\cdot 3\cdots (2k+1)}{2^{k+1}(k+1)(1)_{k+1}} = \frac{1\cdot 2\cdot 3\cdot 4\cdots (2k)(2k+1)}{2^{k+1}(k+1)(1)_{k+1}2\cdot 4\cdots (2k)}$$

$$=\frac{(2k+1)!}{2^{2k+1}(k+1)!(1)_{k+1}}=\frac{(1)_{2k+1}}{2^{2k+1}(1)_{k+1}(1)_{k+1}}$$

$$=\frac{(2)_{2k}}{2^{2k+1}(2)_k(2)_k}=\frac{(1)_k\left(\frac{3}{2}\right)_k(1)_k}{2(2)_k(2)_k}\cdot\frac{1}{k!}$$

Therefore, the series in (2.5) can be written as:

$$G(b) := -\frac{\pi b^2}{8} \sum_{k=0}^{\infty} \frac{(1)_k (1)_k \left(\frac{3}{2}\right)_k}{(2)_k (2)_k} \cdot \frac{(b^2)^k}{k!}.$$

The previous expression corresponds to a hypergeometric function as follows:

$$G(b) = -\frac{\pi b^2}{8} {}_{3}F_2 \left(\begin{array}{c} 1, 1, \frac{3}{2} \\ 2, 2 \end{array} \middle| b^2 \right).$$
(2.6)

498

The hypergeometric function that appears in (2.6) can be evaluated exactly (see https://functions.wolfram.com/HypergeometricFunctions/Hypergeometric 3F2/03/08/06/01/02/08/0001/).

$$_{3}F_{2}\left(\begin{array}{c}1,1,\frac{3}{2}\\2,2\end{array}\middle|z\right) = -\frac{4}{z}\log\left(\frac{1+\sqrt{1-z}}{2}\right).$$
 (2.7)

Taking $z = b^2$ in (2.7), it follows that:

$$_{3}F_{2}\left(\begin{array}{c}1,1,\frac{3}{2}\\2,2\end{array}\middle|b^{2}\right) = -\frac{4}{b^{2}}\log(1+a^{2}),$$

and so, from this equality and (2.6), we have:

$$G(b) = \frac{\pi}{2}\log(1+a^2).$$

Consequently, proposition 2.2 follows.

References

- A. Erdelyi et al., Higher Transcendental Functions, 3 volumes, McGraw-Hill, New York, 1953.
- [2] W. Grabner, N. Hofreiter, Integraltafel:erster Teil, Unbestimmte Integrale; zweiter Teil, Bestimmete Integrale, Springer-Verlag, Wien, 1965.
- [3] R. Askey, Orthogonal Polynomials and Special Functions, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1975.
- [4] A. P. Prudnikov, Yu.A. Brychkov, O. I. Marichev, Integrals and Series, 5 volumes, Gordon and Breach, New York, 1986.
- [5] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, Seventh Edition, Editor(s): Alan Jeffrey, Daniel Zwillinger, Academic Press, New York, 2007.
- [6] James Stewart, Daniel K. Clegg, Saleem Watson, Multivariable Calculus, 9th Edición, Ed Cengage Learning, 2020.
- [7] Juan C. Lopez, Rosalba Mendoza, Jairo A. Mendoza, Topicos de funciones hipergeométricas. En preprint, Ed. Universidad de Pamplona, 2024)