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Abstract

In this article, we evaluate an interesting integral from the famous
book of integrals by Gradshteyn and Ryzhik [5], which, in its seventh
edition, includes an incorrect result. We derive the correct value.
Moreover, we highlight the application of the hypergeometric functions
formalism in the evaluation of this integral.

1 Introduction

The tables of series and integrals have been used over time. Among these,
we can mention [1], [2], [3] [4]. After a search, we found that the table of
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integrals by Gradshteyn and Ryzhik (see [5]) is the most popular among users
of the scientific community. On page 531, section integral 4.224.13 of [5], the
following integral appears:
∫ π

2

0

ln(1 + 2a sin x+ a2)dx =
∞
∑

k=0

22k(k!)2

(2k + 1)(2k + 1)!!

( 2a

1 + a2

)2k+1

, a2 ≤ 1

(1.1)

there is an error in the previous formula, as it can be observed that the series
is not convergent.

The objective of this article is to derive a correct formula that expresses
the integral in (1.1) as a convergent series.

2 Evaluating the integral (1.1)

Theorem 2.1. If a2 ≤ 1, the following integral formula holds:

∫ π

2

0

ln(1 + 2a sin x+ a2)dx =
∞
∑

k=0

2kk!

(2k + 1) · (2k + 1)!!
·
( 2a

1 + a2

)2k+1

.

Demostration 2.1. Let

I(a) =

∫ π

2

0

ln(1 + 2a sin x+ a2)dx.

The expression inside the logarithm of the previous integral can be written as

a product of simpler terms. To achieve this, we note that

1 + 2a sin x+ a2 = (1 + a2)
(

1 +
2a

1 + a2
sin x

)

where from,

I(a) =

∫ π

2

0

ln
[

(1 + a2)
(

1 +
2a

1 + a2
sin x

)]

dx,

we use the logarithm property to split the integral into two parts as follows:

I(a) =

∫ π

2

0

ln(1 + a2)dx+

∫ π

2

0

ln(1 + b sin x)dx,

where

b =
2a

1 + a2
.
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If we denote the second integral on the right-hand side of the previous equality
by F (b), we have that:

I(a) =
π

2
ln(1 + a2) + F (b). (2.2)

To evaluate the integral F (b), we use the power series expansion of log(1+z):

log(1 + z) =
∞
∑

n=0

(−1)nzn+1

n+ 1
, |z| < 1,

with z = b sin x and so

F (b) =

∫ π

2

0

ln(1 + z)dz =

∫ π

2

0

∞
∑

n=0

(−1)nbn+1 sinn+1 x

n+ 1
dx.

Now, the uniform convergence of the above power series allows us to inter-
change the integral and the summation as follows:

F (b) =
∞
∑

n=0

(−1)nbn+1

n+ 1

∫ π

2

0

sinn+1 xdx,

an expansion that we can rewrite in the form:

F (b) =

∞
∑

k=0

b2k+1

2k + 1

∫ π

2

0

sin2k+1 xdx−
∞
∑

k=0

b2k+2

2k + 2

∫ π

2

0

sin2k+2 xdx. (2.3)

Using the well-known Wallis formulas [6] :
∫ π

2

0

sin2k+1 xdx =
2kk!

(2k + 1)!!

and
∫ π

2

0

sin2k xdx =
(2k + 1)!!π

2k+1(2k + 1)k!
.

The equality (2.3) can be written as

F (b) =

∞
∑

k=0

2kk! b2k+1

(2k + 1) · (2k + 1)!!
− πb2

4

∞
∑

k=0

(2k + 3)!! b2k

2k+1(k + 1)(k + 1)!(2k + 3)
.(2.4)

Therefore, from (2.2), (2.3), and (2.4), it follows that:

I(a) =
∞
∑

k=0

2kk!

(2k + 1) · (2k + 1)!!
·
( 2a

1 + a2

)2k+1

.
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Proposition 2.2. For b = 2a

1+a2
, we have

G(b) := −πb2

4

∞
∑

k=0

(2k + 3)!! b2k

2k+1(k + 1)(k + 1)!(2k + 3)
=

π

2
log(1 + a2). (2.5)

Demostration 2.2. Recall that the Pochhammer symbol (α)n, defined as:

(α)n := α(α+ 1)(α + 2) · · · (α + n− 1), n ∈ N,

(α)0 := 1,

satisfies the following properties:

(α)n+1 = α(α + 1)n

(1)n = n!

(α)2n = 22n
(α

2

)

n

(α+ 1

2

)

n

,

the coefficient in the power series shown in (2.5) can be written as:

(2k + 3)!!

2k+1(k + 1)(k + 1)!(2k + 3)
=

1 · 3 · · · (2k + 1)

2k+1(k + 1)(1)k+1

=
1 · 2 · 3 · 4 · ·(2k)(2k + 1)

2k+1(k + 1)(1)k+12 · 4 · ·(2k)

=
(2k + 1)!

22k+1(k + 1)!(1)k+1

=
(1)2k+1

22k+1(1)k+1(1)k+1

=
(2)2k

22k+1(2)k(2)k
=

(1)k

(

3

2

)

k

(1)k

2(2)k(2)k
· 1

k!
.

Therefore, the series in (2.5) can be written as:

G(b) := −πb2

8

∞
∑

k=0

(1)k(1)k

(

3

2

)

k

(2)k(2)k
· (b

2)k

k!
.

The previous expression corresponds to a hypergeometric function as follows:

G(b) = −πb2

8
3F2

(

1, 1, 3
2

2, 2

∣

∣

∣

∣

∣

b2
)

. (2.6)
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The hypergeometric function that appears in (2.6) can be evaluated exactly
(see https://functions.wolfram.com/HypergeometricFunctions/Hypergeometric
3F2/03/08/06/01/02/08/0001/).

3F2

(

1, 1, 3
2

2, 2

∣

∣

∣

∣

z

)

= −4

z
log
(1 +

√
1− z

2

)

. (2.7)

Taking z = b2 in (2.7), it follows that:

3F2

(

1, 1, 3
2

2, 2

∣

∣

∣

∣

b2

)

= − 4

b2
log(1 + a2),

and so, from this equality and (2.6), we have:

G(b) =
π

2
log(1 + a2).

Consequently, proposition 2.2 follows.
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