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Abstract
In this article, we revisit a specific integral previously analyzed

using complex analysis and branch points. A generalized form of this

integral is derived using Cauchy’s residue theorem, followed by an

additional generalization employing hypergeometric functions.

1 Introduction

The integral
∫ b

a

(x2 − a2)
1
2 (b2 − x2)

1
2
dx

x
, (1.1)

was considered in [1], where the authors applied the residue theorem from
complex analysis, for which they needed to introduce two branch points. In
Section 2, we use Cauchy’s residue theorem, to obtain the following general-
ization of (1.1):
∫ b

a

(x2 − a2)
1
2n (b2 − x2)1−

1
2n dx =

πb2

4

[

(a

b

)2

+ 2n
(a

b

)
1
n

+ 2n− 1

]

. (1.2)

Then, in Section 3, we present a generalization of the above integrals using
hypergeometric functions.
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2 Generalization of the integral (1.1)

For n ∈ N, consider the integral J , defined for real numbers with 0 < a < b

by

J =

∫ b

a

(x2 − a2)
1
2n (b2 − x2)1−

1
2n

dx

x
.

By the substitution

z2n =
x2 − a2

b2 − x2
,

the integral J can be written in terms of the new integration variable z as

J = n(b2 − a2)2n
∫

∞

0

z2n

(1 + z2n)2(a2 + b2z2n)
dz.

Considering that z is in the integrand and in the parity function, with c = a
b
,

the integral J can be written as

J =
n(b2 − a2)2n

2b2

∫

∞

−∞

z2n

(1 + z2n)2(c2 + z2n)
dz. (2.3)

Let z ∈ C and consider the function f(z) given by

f(z) =
z2n

(1 + z2n)2(c2 + z2n)
.

Observe that

zk = c1/ne
(1+2k)π

2n
i, k = 0, 1, 2, . . . , 2n− 1. (2.4)

are simple poles of f in the complex plane, of which for k = 0, 1, 2, . . . , n−1,
are located in the upper half-plane. Therefore, the residue of f at zk [2, p.
132] is given by

Res(f, zk) = lim
z→zk

z2n

(1 + z2n)2
(z − zk)

(c2 + z2n)
=

z2nk
(1 + z2nk )2

lim
z→zk

(z − zk)

c2 + z2n
.

Using L’Hôpital’s rule to evaluate the previous limit, we have:

Res(f, zk) =
z2nk

(1 + z2nk )2
·

1

2nz2n−1
k

=
1

2n

zk

(1 + z2nk )2
.
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Taking into account the expression of zk given in (2.3) and using Euler’s
identity eiθ = cos θ + i sin θ, the previous residue simplifies to:

Res(f, zk) =
c

1
n e

(1+2k)
2n

πi

2n(1− c2)2
, k = 0, 1, 2, . . . , n− 1. (2.5)

On the other hand, observe that wk, given by wk = e
(1+2k)π

2n
i, corresponds to

double poles of f in the upper half-plane.
Define g(z) = z2n

c2+z2n
. Then g′(z) = 2nc2z2n

z(c2+z2n)2
. Calculating these limits

and derivatives [2, p. 132], it follows that

Res(f, wk) = lim
z→wk

d

dz

[

(

g(z)
z − wk

1 + z2n

)2
]

=
(1− 2n− c2)

4n2(c2 − 1)2
e

(1+2k)π
2n

i. (2.6)

The Cauchy Residue Theorem allows us to write

∫

∞

−∞

z2n

(1 + z2n)2(c2 + z2n)
dz = 2πi

[

n−1
∑

k=0

Res(f, zk) +

n−1
∑

k=0

Res(f, wk)

]

.

Taking into account the relationships given in (2.5) and (2.6), the previous
integral can be expressed as

∫

∞

−∞

z2n

(1 + z2n)2(c2 + z2n)
dz = 2πi

(

1− c2 + 2n c1/n − 2n
)

4n2(1− c2)2

n−1
∑

k=0

e
(1+2k)π

2n
i.

Using the geometric series to evaluate the previous sum, we have

n−1
∑

k=0

e
(1+2k)π

2n
i = e

πi

2n

n−1
∑

k=0

e
kπ

n
i = e

πi

2n ·

[

1− eπi

1− e
πi

n

]

= 2
e

πi

2n

1− e
πi

n

=
2

e−
πi

2n − e
πi

2n

=
i

sin ( π
2n
)
.

Substituting the value of this sum into the indefinite integral, it follows that
∫

∞

−∞

z2n

(1 + z2)2(c2 + z2n)
dz =

π(c2 + 2n− 1− 2nc1/n)

2n2(c2 − 1)2
·

1

sin( π
2n
)
.

Finally, from the above equality, equation (2.3), and c = a
b
, it follows that

∫ b

a

(x2 − a2)
1
2n (b2 − x2)1−

1
2n dx =

πb2

4

[

(a

b

)2

+ 2n
(a

b

)
1
n

+ 2n− 1

]

. (2.7)

Note 1: If we set n = 1 in (2.7), then we get the result of (1.1) considered
in [1].
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3 Generalization of the integral (1.2)

Let us consider the defined integral I given by

I =

∫ b

a

(x2 − a2)α(b2 − x2)1−αdx

x
,

where 0 < α < 1 and 0 < a < b. Substituting x2−a2 = (b2−a2)t, the integral
I can be expressed as

I =
(b2 − a2)2

2a2

∫ 1

0

tα(1− t)1−α

[

1−

(

1−
1

c2

)

t

]

−1

dt where c =
a

b
.

Using Euler’s integral representation (see Askey, Theorem 2.2.1, p. 65)
∫ 1

0

tb−1(1− t)c−b−1(1− xt)−adt =
Γ(b)Γ(c− b)

Γ(c)
2F1

(

a b

c

∣

∣

∣

∣

x

)

,

with the identification b = 1 + α, c = 3, a = 1, and x = 1 − 1
c2
, the integral

I takes the form

I =
(b2 − a2)2

4a2
Γ(1 + α)Γ(2− α) 2F1

(

1 1 + α

3

∣

∣

∣

∣

x

)

. (3.8)

In order to evaluate the hypergeometric function that appears on the right
side of (3.8), we make use of the identity [3, formula 2.3.13, p. 79]

2F1

(

a b

c

∣

∣

∣

∣

x

)

=
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1

(

a b

a + b+ 1− c

∣

∣

∣

∣

1− x

)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1−x)c−a−b

2F1

(

c− a c− b

1 + c− a− b

∣

∣

∣

∣

1− x

)

q with b, c, a, x as defined earlier. Thus, from (3.8), we obtain

I =
(b2 − c2)2

2a2
Γ(1 + α)Γ(1− α) 2F1

(

1 1 + α

α

∣

∣

∣

∣

1

c2

)

+
(b2 − c2)2

2a2
Γ(α− 1)Γ(2− α)

(c2)1−α 2F1

(

2 2− α

2− α

∣

∣

∣

∣

1

c2

)

.

(3.9)

Using the formula that expresses the function (1− z)−d as a hypergeometric
series (1− z)−d = 1F0( d | z), we have

2F1

(

2 2− α

2− α

∣

∣

∣

∣

1

c2

)

= 1F0

(

2

∣

∣

∣

∣

1

c2

)

=
c4

(c2 − 1)2
. (3.10)
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Applying the recurrence relation of the gamma function and Euler’s reflection
formula we obtain

Γ(1 + α)Γ(1− α) =
απ

sinαπ
, and Γ(α− 1)Γ(2− α) = −

π

sinαπ
. (3.11)

Considering (3.10) and (3.11), the expression given in (3.9) can be written
as

I =
(b2 − a2)

2

2a2
απ

sinαπ

[

2F1

(

1 1 + α

α

∣

∣

∣

∣

1

c2

)

−
c2+2α

α(c2 − 1)2

]

. (3.12)

Finally, an application of the transformation:

2F1

(

a b

b− 1

∣

∣

∣

∣

z

)

=
(1− z)−a−1 [b− 1 + (a− b+ 1)z]

b− 1
,

with a = 1, b = 1 + α, z = 1
c2
, allows us to write

2F1

(

1 1 + α

α

∣

∣

∣

∣

1

c2

)

= c4
[

α + (1− α)( 1
c2
)

α(c2 − 1)2

]

, (3.13)

recalling that c = a
b
. Substituting (3.13) into (3.12) yields the value of the

integral I

I =
b2

2

απ

sin(απ)

[(

1

α
− 1

)

+
a2

b2
−

1

α

(a

b

)2α
]

. (3.14)

Note 2. In formula (3.14), if we take α = 1
2
, then we obtain

I =
b2π

4

[

(2− 1) +
a2

b2
− 2

(a

b

)

]

=
πb2

4

(

1−
a

b

)2

,

which corresponds to the value found in [1].
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