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Abstract

In this paper, we solve an asset flow differential equations (AFDEs)
system, which plays an important role in financial modeling and mar-
ket dynamics, using an improved differential transformmethod (DTM).
The improved method combines the conventional DTM with Adomian
polynomials to enhance the accuracy and efficiency of solving complex
nonlinear systems of equations. This hybrid approach overcomes some
of the limitations found in traditional numerical methods when dealing
with AFDEs. It is faster than numerical methods, easy to compute,
and highly accurate. The solution obtained from this method can be
expressed as a convergent infinite series, providing a semi-analytical
representation of the system’s behavior.
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1 Introduction

It is well known that the financial system is one of the most important
tools in the world that affects people worldwide. The financial system is a
complicated system that is not easy to understand. One of the good ways to
understand financial dynamics is a mathematical model that can use variables
and parameters to describe the movements in economic systems. The asset
flow differential equations (AFDEs) system is the mathematical model that
considers demand, supply, market price, investor preferences, and transition
rate [3]. This model had been used to explain the process behind the price
change and market behavior [1].

Over the past several decades, researchers have employed various ap-
proaches to study asset flow differential equations. Duran and Gaginalp [7]
proposed the algorithm that estimated the parameters in the AFDEs that are
used to find the daily market price and net asset values by outperforming the
random walk model. Prathumwan et al. [10] proposed the fractional-order
asset flow differential equations and analyzed the stability of the proposed
model.

This paper proposes a novel hybrid approach [8, 5] combining an improved
differential transform method (DTM) [9] with Adomian polynomials [2]. The
DTM, known for its efficiency in solving differential equations, is enhanced
through integration with the Adomian decomposition method, which can
handle nonlinear terms. This combination represents the strengths of both
methods and reduces the limitations of each method.

2 Asset Flow Differential Equations

The AFDEs was proposed by Gaginalp et al. [3]. Then, it was modified by
Duran [6] who considered the dynamics of four states as x1(t) is the market
price of an asset at time t, x2(t) is the fraction of total asset invested in the
asset at time t, x3(t), x4(t) are the trend-based component and the value-
based component of the investor preference at time t, respectively. The
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AFDEs can be written in following form:

dx1

dt
= δx1

( k

1− k

1− x2

x2
− 1
)

,

dx2

dt
= k(t)(1− x2)− (1− k)x2 +

x2(1− x2)

x1

dx1

dt
,

dx3

dt
= −c1x3 + c1q1

1

x1

dx1

dt
,

dx4

dt
= c2

(

q2
(Pa − x1

Pa

)

− x4

)

,

(2.1)

with constrains
x1 > 0, 0 < x2 < 1,−1 < x3 + x4 < 1, Pa > 0,
where Pa is the fundamental price, k(t) = 0.5 + 0.5 tanh(x3 + x4) is the
transition rate. Throughout this paper, all parameters are assumed to be
nonnegative.

3 DTM incorperated with Adomian polyno-

mials method

3.1 DTM

For the convenience of readers, the definition and procedure of the DTM
[9] are reviewed. The differential transform of the kth differentiable function
f(x) at x = 0 can be defined by

F (k) =
1

k!

(

dkf(x)

dxk

)
∣

∣

∣

∣

x=0

, (3.2)

where F (k) is the transformed function and f(x) is the original function.
The differential inverse transform of F (k) can be written as

f(x) =

∞
∑

k=0

F (k)xk, (3.3)

which can be approximated by

fN(x) =
N
∑

k=0

F (k)xk.
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Using equation (3.2) and equation (3.3), we obtain

f(x) =

∞
∑

k=0

xk

k!

(

dkf(x)

dxk

)
∣

∣

∣

∣

x=0

.

3.2 Adomian Polynomials

The Adomian decomposition method (ADM) [2] is a useful tool to solve
linear and nonlinear problems which can be represented as the solution in
infinite series form. Briefly, ADM for solving a system of equations can be
shown as follows:
The solution ui can be written as

ui = fi +Ni, i = 1, 2, . . . , p,

where fi(u1, u2, . . . , up) are nonlinear terms and Ni(u1, u2, . . . , up) are other
analytic terms.
The terms ui and fi can be written in series forms as

ui =

∞
∑

n=0

ui(n)λ
n

fi(u1, . . . , up) =

∞
∑

n=0

Ain(u1(0), . . . , u1(n), . . . , up(0), . . . , up(n))λ
n,

where Ain is the Adomian polynomial which can be represented by

Ain =
1

n!

dn

dλn
fi

(

∞
∑

j=0

u1(j)λ
j, . . . ,

∞
∑

j=0

up(j)λ
j

)

∣

∣

∣

∣

λ=0

, i = 1, 2, . . . , p.

4 Application to AFDEs

Rearranging AFDEs (2.1), we obtain

dx1

dt
+ x1δ

( k

1− k

)

+ x1δ −
x1

x2

δ
( k

1− k

)

= 0,

−x2(1− x2)
dx1

dt
+ x1

dx2

dt
− kx1 + x2x1 = 0,

−c1q1
dx1

dt
+ x1

dx3

dt
+ c1x1x3 = 0,

dx4

dt
− c2

(

q2
(Pa − x1

Pa

)

− x4

)

= 0.

(4.4)
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Define

f1(x1, x2, x3, x4) = −

x1

x2
δ

(

k

1− k

)

,

f2(x1, x2, x3, x4) = x2x1,

f3(x1, x2, x3, x4) = c1x1x3.

(4.5)

By applying Adomian polynomials, we have the following:
For n = 0;

A1(0) = −δ

(

k

1− k

)

x1(0)

x2(0)

,

A2(0) = x2(0)x1(0),

A3(0) = c1x1(0)x3(0).

(4.6)

For n = 1,

A1(1) = −δ

(

k

1− k

)

(

x1(1)x2(0) − x2(1)x1(0)

x2
2(0)

)

,

A2(1) = x2(0)x1(1) + x1(0)x2(1),

A3(1) = c1
(

x1(1)x3(0) + x3(1)x1(0)

)

.

(4.7)

For n = 2,

A1(2) = −δ
( k

1− k

)(x1(2)

x2(0)

−

x2(2)x1(0)

x2
2(0)

+
x2
2(1)x1(0)

x3
2(0)

−

x1(1)x2(1)

x2
2(0)

)

,

A2(2) = x1(1)x2(1) + x1(2)x2(0) + x2(2)x1(0),

A3(2) = c1
(

x1(1)x3(1) + x1(2)x3(0) + x3(2)x1(0)

)

.

(4.8)

For n = 3,

A1(3) = − δ
( k

1− k

)

[

−

x1(1)x2(2)

x2
2(0)

−

x1(2)x2(1)

x2
2(0)

+
2x1(2)x2(4)

x3
2(0)

+
x1(3)

x2(0)

−

x2(3)x1(0)

x2
2(0)

−

x3
2(1)x1(0)

x4
2(0)

+
x1(1)x

2
2(1)

x3
2(0)

]

,

A2(3) =x1(1)x2(2) + x2(1)x1(2) + x1(3)x2(0) + x2(3)x1(0),

A3(3) = c1(x1(1)x3(2) + x3(1)x1(2) + x1(3)x3(0) + x3(3)x1(0)),

(4.9)

and so on.
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Next, we consider fi(x1, x2, x3, x4) for i = 1, 2, 3 by applying DTM as
follows:

F1(0) =− δ
( k

1− k

)X1(0)

X2(0)
,

F2(0) = X2(0)X1(0),

F3(0) = c1X1(0)X3(0),

F1(1) =− δ
( k

1− k

)(X1(1)X2(0)−X2(1)X1(0)

X2(0)2

)

,

F2(1) = X2(0)X1(1) +X1(0)X2(1),

F3(1) = c1
(

X1(1)X3(0) +X3(1)X1(0)
)

,

F1(2) =− δ
( k

1− k

)(X1(2)

X2(0)
−

X2(2)X1(0)

X2(0)2
+

X2(1)
2X1(0)

X2(0)3
−

X1(1)X2(1)

X2(0)2

)

,

F2(2) = X1(1)X2(1) +X1(2)X2(0) +X2(2)X1(0),

F3(2) = c1
(

X1(1)X3(1) +X1(2)X3(0) +X3(2)X1(0)
)

,

F1(3) =− δ
( k

1− k

)

[

−

X1(1)X2(2)

X2(0)2
−

X1(2)X2(1)

X2(0)2
+

2X2(1)X2(2)X1(0)

X2(0)3
+

X1(3)

X2(0)
,

−

X2(3)X1(0)

X2(0)2
−

X2(1)
3X1(0)

X2(0)4
+

X1(1)X2(1)
2

X2(0)3

]

,

F2(3) = X1(1)X2(2) +X2(1)X1(2) +X1(3)X2(0) +X2(3)X1(0),

F3(3) = c1(X1(1)X3(2) +X3(1)X1(2) +X1(3)X3(0) +X3(3)X1(0)),

and so on.
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By using the DTM to system (4.4), we have

(u+ 1)X1(u+ 1) +X1(u)δ
( k

1− k

)

+X1(u)δ + F1(u) = 0,

u
∑

m=0

(−X2(m))(u−m+ 1)X1(u−m+ 1)

+
u
∑

m=0

(

m
∑

m1=0

X2(m1)X2(m−m1)
)

(u−m+ 1)X1(u−m+ 1)

+
u
∑

m=0

X1(m)(u−m+ 1)X2(u−m+ 1)− kX1(u) + F2(u) = 0,

−c1q1(u+ 1)X1(u+ 1) +

u
∑

m=0

X1(m)(u−m+ 1)X3(u−m+ 1) + F3(u) = 0,

(u+ 1)X4(u+ 1)− c2q2 +
c2q2

Pa

X2(u) + c2X4(u) = 0.

From the above system, if u = 0, we obtain

X1(1) = −X1(0)δ
( k

1− k

)

−X1(0)δ + δ
( k

1− k

)X1(0)

X2(0)
,

X2(1) =
1

X1(0)

(

X2(0)X1(1)−X2(0)
2X1(1)− kX1(0)−X2(0)X1(0)

)

,

X3(1) =
1

X1(0)

(

c1q1X1(1) − c1X1(0)X3(0)
)

,

X4(1) = c2q2 −
c2q2X2(0)

Pa

− c2X4(0).

(4.10)



582 K. Trachoo et al.

If u = 1, then we have

X1(2) =
1

2

[

−X1(1)δ
( k

1− k

)

−X1(1)δ,

+ δ
( k

1− k

)(X1(1)X2(0)−X2(1)X1(0)

X2(0)2

)]

,

X2(2) =
1

2X1(0)

(

− 2X2(0)
2X1(2)− 2X2(0)X2(1)X1(1)

+ 2X1(2)X2(0)− kX1(1)−X2(0)X1(1)−X1(0)X2(1)
)

,

X3(2) =
1

2X1(0)

(

2c1q1X1(2)−X1(1)X3(1)− c1
(

X1(1)X3(0)

+X3(1)X1(0)
)

)

,

X4(2) =
1

2

(

c2q2 −
c2q2X2(1)

Pa

− c2X4(1)
)

.

(4.11)

If u = 2, then we get

X1(3) =
1

3

[

−X1(2)δ
( k

1− k

)

−X1(2)δ − δ
( k

1− k

)

(X1(2)

X2(0)
+

X2(2)X1(0)

X2(0)2
+

X2(1)
2X1(0)

X2(0)3
−

X1(1)X2(1)

X2(0)2

)

,

X2(3) =
1

3X1(0)

(

3X2(0)X1(3) +X2(1)X1(2)−X1(1)X2(2)

− 4X2(0)X2(1)X1(2)− 3X2(0)
2X1(3)− 2X2(0)X2(2)X1(1)

−X2(1)
2X1(1) + kX1(2)−X1(1)X2(1)−X1(2)X2(0)−X2(2)X1(0)

)

,

X3(3) =
1

3X1(0)

(

c1q13X1(3)− 2X1(1)X3(2)−X1(2)X3(1)

− c1
(

X1(1)X3(1) +X1(2)X3(0) +X3(2)X1(0)
)

)

,

X4(3) =
1

3

(

c2q2 −
c2q2X2(2)

Pa

− c2X4(2)
)

.

(4.12)
We use a similar argument for u = 3, 4, . . . to get Xi(u+ 1) for i = 1, 2, 3, 4.
Applying DTM to the initial conditions

x1(0)=2, x2(0) = 0.1, x3(0) = 0, x4(0) = 0.0015,
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we obtain

X1(0) = 2, X2(0) = 0.1, X3(0) = 0, X4(0) = 0.0015.

Define the values of parameters as

δ = 1, c1 = 0.087, c2 = 0.027, q1 = 0.01, q2 = 0.04, Pa = 10,

and k = 0.5 + 0.5 tan(X3 +X4).

The differential inverse transform can be written as

xi(t) =
∞
∑

m=0

Xi(m)tm, i = 1, 2, 3, 4.

Then, we obtain the approximated analytical solution of AFDEs as fol-
lows:

x1(t) = 2− 18.0481t+ 48.5559t2 + 11.1081t3 + . . .

x2(t) = 0.1− 0.4114t+ 0.2300t2 + 1.7103t3 + . . .

x3(t) = −0.0079t− 0.0140t2 − 0.0173t3 + . . .

x4(t) = 0.0015 + 0.0010t+ 5.4833× 10−4t2 + 3.4678× 10−4t3 + . . .

(4.13)

5 Conclusions

Using the differential transform method (DTM) in combination with Ado-
mian polynomials, we solved the asset flow differential equations system
(AFDEs) which was represented as a mathematical model incorporating fac-
tors such as demand, supply, market price, investor preferences, and transi-
tion rates. This method provides an approximate analytical solution in the
form of a convergent series that is easy to compute. By using this approach,
the complicated processes underlying price changes and market behavior can
be better understood and modeled. Consequently, this advancement signifi-
cantly enhances financial modeling and market dynamics analysis, providing
a valuable tool for interpreting and predicting market trends.
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