International Journal of Mathematics and Computer Science Volume **20**, Issue no. 2, (2025), 655–658 DOI: https://doi.org/10.69793/ijmcs/02.2025/arriola

Doubly Isolate Domination in the Corona of Graphs

 $\begin{pmatrix} M \\ CS \end{pmatrix}$

Shaleema A. Arriola

Department of Mathematics College of Teacher Education Basilan State College Isabela City, Basilan, Philippines

email: shallarriola1023@gmail.com

(Received December 15, 2024, Accepted January 15, 2025, Published April 2, 2025)

Abstract

The doubly dominating set of a graph G is a set of dominating set $S \subseteq V(G)$ such that both $\langle S \rangle$ and $\langle V(G) \setminus S \rangle$ have an isolated vertex. The cardinality of a doubly isolate dominating set with minimum cardinality is called doubly isolate domination number and is denoted by $\gamma_{00}(G)$. In this paper, we characterize the doubly isolate dominating set for the corona and lexicographic product of two graphs.

1 Introduction

For simplicity, a simple graph G = (V, E) with V(G) as vertex set and E(G) as edge set is called a graph G. Two vertices $u, v \in V(G)$ are said to be neighbors (or adjacent) if $uv \in E(G)$. The set of all neighbors of u is denoted by N(u) and it is called the open neighborhood of u; i.e., $N(u) = \{x \in V(G) : xv \in E(G)\}$. The closed neighborhood of u, denoted by N[u], is given by $N[u] = N(u) \cup \{u\}$ [6].

A set $S \subseteq V(G)$ is said to be a *dominating set* of G if $|N_G[S]| = |V(G)|$. The minimum cardinality of the dominating set is called the *domination*

Key words and phrases: Dominating set, isolate dominating set, doubly isolate dominating set, corona, lexicographic product.
AMS (MOS) Subject Classifications: 05C69.
ISSN 1814-0432, 2025, https://future-in-tech.net

number, denoted by $\gamma(G)$ [7]. A dominating set $S \subseteq V(G)$ is called an isolate dominating set if the subgraph $\langle S \rangle$ induced by S has an isolated vertex. The minimum cardinality of an isolate dominating set is called the *isolate* domination number and is denoted by $\gamma_0(G)$. This new variant of domination was introduced in 2013 by Hamid and Balamurugan in [8, 9, 10] and further studied in [2]. Moreover, characterization of the isolate domination of some special graphs such as cocktail party, graph, crown graph, gear graph, and jump graph were derived in [3].

An isolate dominating set $S \subseteq V(G)$ is called a *doubly isolate dominating* set of G if $\langle V(G) \setminus S \rangle$ has an isolated vertex. The minimum cardinality of a doubly isolate dominating set is called *doubly isolate domination number*, denoted by $\gamma_{00}(G)$. The concept of doubly isolate domination was introduced by Arriola [1], who characterized both the lower and upper bound of the doubly isolate domination and established some other properties.

2 Doubly Isolate Domination in the Corona of Graphs

The corona of two graphs G and H, denoted by $G \circ H$, is the graph obtained by taking one copy of G of order n and n copies of H, and then joining the *i*-th vertex of G to every vertex in the *i*-th copy of H. For every $v \in V(G)$, we denote by H^v the copy of H whose vertices are joined or attached to the vertex v. For each $v \in V(G)$, we use the notations $T^v \subseteq V(H^v)$ and $D^v \subseteq V(\langle \{v\} \rangle + H^v)$.

There are few studies about the domination in the corona of graphs. For instance, Arriola and Canoy [4] characterized the doubly connected domination of the corona as well as the (1, 2)-domination in the corona of garphs [5].

Lemma 2.1. [1] Let G be any graph of order $n \ge 3$. If $\Delta(G) = n - 1$ and $\delta(G) \ge 2$, then G has no doubly isolate dominating set.

For the corona of two graphs G and H, we have:

Proposition 2.2. If G is trivial and H has $\delta(H) \ge 1$, then $G \circ H$ has no doubly isolate dominating set.

Doubly Isolate Domination...

Proof. Let *H* be any graph with $\delta(H) \leq 1$ of order *n*. Then, $\delta(G \circ H) \leq 1$. Since *G* is trivial, $\Delta(G \circ H) = n - 1$. By Lemma 2.1, $G \circ H$ has no doubly isolate dominating set.

The next theorem is a characterization of the doubly isolate dominating set for the corona of two graphs.

Theorem 2.3. Let G be any nontrivial graph and H be any graph. Then a nonempty subset $C \subseteq V(G \circ H)$ is a doubly isolate dominating set of $G \circ H$ if and only if

$$C = \bigcup_{v \in V(G)} D^v$$

and the following hold:

- (i.) $D^u = T^u$ is a dominating set of H^u for each $u \notin D^u$;
- (ii.) there exists $x \in V(G)$ such that D^x has an isolated vertex and $N_G(x) \cap C = \emptyset$ whenever $D^x = \{x\};$
- (iii.) there exists $y \in V(G)$ such that $V(\langle \{y\} \rangle + H^y) \setminus D^y$ has an isolated vertex and $N_G(y) \subseteq C$ whenever $D^y = H^y$.

Proof. Suppose $C \subseteq V(G \circ H)$ is a doubly isolate dominating set of $G \circ H$. Clearly,

$$C = \bigcup_{v \in V(G)} D^v.$$

Let $u \notin D^u$. Since *C* is a dominating set of $G \circ H$, $D^u = T^u$ is a dominating set of H^u . Also, since *C* has an isolated vertex and for any $u, v \in V(G)$, $D^u \cap D^v = \emptyset$, it follows that D^x has an isolated vertex for some $x \in V(G)$. If $D^x = \{x\}$ and since *x* is an isolated vertex in *C*, then every element of N(x) does not belong to *C*; i.e., $N_G(x) \cap C = \emptyset$. Similarly, since $V(G \circ H) \setminus C$ has an isolated vertex, $V(\langle \{y\} \rangle + H^y) \setminus D^y$ has an isolated vertex for some $y \in V(G)$. If $D^y = H^y$ and since *y* is an isolated vertex in $V(G \circ H) \setminus C$, then every element of $N_G(y)$ must be in *C*; i.e., $N_G(y) \subseteq C$.

The converse is clear.

657

References

- [1] B. H. Arriola, *Doubly Isolate Domination in Graphs*, International Journal of Mathematical Analysis, **9**, no. 57, (2015), 2793–2798.
- [2] B. H. Arriola, *Isolate Domination in the Join and Corona of Graphs*, Applied Mathematical Sciences, **9**, no. 31, (2015), 1543–1549.
- [3] S. A. Arriola, *Isolate Domination of Some Special Graphs*, Journal of Higher Education Research Disciplines, **2**, no. 2, (2017), 23–31.
- [4] B. H. Arriola, S. R. Canoy Jr., Doubly Connected Domination in the Corona and Lexicographic Product of Graphs, Applied Mathematical Sciences, 8, no. 31, (2014), 1521–1533.
- [5] S. A. Arriola, S. R. Canoy, Jr., (1,2)-domination in graphs under some binary operations, Advances & Applications in Discrete Mathematics, 19, no. 1, (2018).
- [6] J. A. Bondy, U. S. Murty, Graph Theory with Applications, *Elsevier Science Publishing*, New York, 1976.
- [7] S. T. Hedetniemi, T. W. Haynes, P. J. Slater, Fundamentals of Domination in Graphs, *Monographs and Textbooks in Pure and Applied Mathematics*, Marcel Dekker, New York, NY, 1998.
- [8] I. Sahul Hamid, S. Balamurugan, Isolate Domination Number and Maximum Degree, Bulletin of the International Mathematical Virtual Institute, 3, (2013), 127–133.
- [9] I. Sahul Hamid, S. Balamurugan, Isolate Domination in Unicyclic Graphs, International Journal of Mathematics and Soft Computing, 3, no. 3, (2013), 79–83
- [10] I. Sahul Hamid, S. Balamurugan, Extended Chain of Domination Parameters in Graphs, ISRN Combinatorics, 2013.