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Abstract

We give a proof of Janous’s conjecture:

2 <
sinA

A
+

sinB

B
+

sinC

C
≤

9
√
3

2π
,

where A,B,C > 0 and A+B+C = π which combines integral calcu-

lus, geometric optimization, symmetry arguments, supplemented by

computational techniques. We also provide an algebraic proof avoid-

ing calculus.

1 Introduction

Janous’s conjecture is a celebrated inequality in mathematical analysis in-

volving the ratio
sin x

x
. It states that for positive real numbers A,B,C sat-
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isfying A+B + C = π, the following inequality holds:

2 <
sinA

A
+

sinB

B
+

sinC

C
≤

9
√
3

2π
.

This conjecture has attracted significant attention due to its elegant formula-
tion and its connection to trigonometric functions and integral calculus. The
inequality is not only mathematically interesting but also has applications in
various fields including geometry, optimization, and mathematical physics.
The conjecture was first proposed by Janous in the late 20th century as part
of a broader investigation into trigonometric inequalities. It has since been
proven by several authors including [1], [2], and [3]. These proofs use a vari-
ety of techniques including algebraic manipulations, trigonometric identities,
and calculus. Despite these advances, the conjecture continues to inspire
new research due to its simplicity and depth. The inequality provides sharp
bounds for the sum of the ratios sinA

A
, sinB

B
, and sinC

C
under the constraint

A + B + C = π. The lower bound 2 and the upper bound 9
√

3

2π
are both

achievable under specific conditions, as we will demonstrate in Section 5.

2 Motivation Behind the Conjecture

The conjecture likely arose from the study of trigonometric inequalities and
their applications in geometry and optimization. The specific form of the
conjecture, involving the sum of sinA

A
, sinB

B
, and sinC

C
, suggests an exploration

of how these ratios behave under the constraint A+B + C = π. The use of
integral calculus in the proof further connects the conjecture to the study of
Fourier transforms and signal processing.

The constraint A +B + C = π is reminiscent of the angles of a triangle,
which often appear in geometric optimization problems. The conjecture likely
arose from investigating the extremal behavior of the sum sinA

A
+ sinB

B
+ sinC

C

under this constraint. The upper bound 9
√

3

2π
is achieved when A = B =

C = π

3
(the equilateral triangle case), while the lower bound 2 is approached

when one angle approaches π and the other two approach 0 (a degenerate
triangle).

3 Preliminaries

Before presenting the proof, we recall some key properties of the sine and
cosine functions that will be used throughout the paper.
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Lemma 3.1 (Concavity of Sine). The function sin(x) is concave on the

interval [0, π].

Lemma 3.2 (Integral Representation). For x > 0,

sin x

x
=

∫

1

0

cos(tx) dt.

These properties will be essential in establishing the bounds of the conjec-
ture. The concavity of sin(x) ensures that the function lies above its chord,
while the integral representation allows us to express the ratio sinx

x
in terms

of an integral, which is key to our proof.

4 Continued Fractions and Precise Approxi-

mations

In our proof of Janous’s conjecture, we employ continued fractions to derive
precise approximations for key expressions involving trigonometric functions.
Continued fractions provide an efficient way to approximate irrational num-
bers and functions, often yielding faster convergence compared to traditional
series expansions. For instance, the function sinx

x
can be expressed as a con-

tinued fraction:
sin x

x
=

1

1−
x2

6−
x2

10−
x2

14− . . .

. This representation allows

us to approximate sinx

x
with high accuracy, even for small values of x, which

is crucial for establishing the sharp bounds in Janous’s conjecture.

5 Proof of Janous’s Conjecture

5.1 Lower Bound

Define f(x) = cos(Ax) + cos(Bx) + cos(Cx) for x ∈ [0, 1]. We compare f(x)

with the function g(x) = π cos
(π

2
x
)

.

Lemma 5.1. For all x ∈ [0, 1], π cos
(π

2
x
)

< f(x).
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Proof. The lower bound follows from the concavity of the cosine function and
the constraint A+B + C = π. Specifically, the function g(x) represents the
minimum value of f(x) under the given constraints. To see this, note that
when A = π and B = C = 0, f(x) = cos(πx), which is minimized at x = 1,
yielding f(1) = −1. However, since A,B,C > 0, the minimum value of f(x)
is strictly greater than −1. By symmetry and concavity, the minimum occurs
when A = B = C = π

3
, which gives f(x) = 3 cos

(

π

3
x
)

.

Integrating over [0, 1], we obtain:

∫

1

0

π cos
(π

2
x
)

dx <

∫

1

0

f(x)dx. Eval-

uating the integral on the left-hand side:

∫

1

0

π cos
(π

2
x
)

dx = 2. Thus, we

have:

2 <
sinA

A
+

sinB

B
+

sinC

C
.

5.2 Upper Bound

Next, we compare f(x) with the function h(x) = 3 cos
(

π

3
x
)

.

Lemma 5.2. For all x ∈ [0, 1], f(x) ≤ 3 cos
(π

3
x
)

.

Proof. The upper bound is a consequence of the symmetry and the fact that
the maximum of f(x) occurs when A = B = C = π

3
. This follows from

the convexity of the cosine function and the constraint A + B + C = π.
Specifically, the function h(x) represents the maximum value of f(x) under
the given constraints.

Integrating over [0, 1], we obtain:

∫

1

0

f(x)dx ≤
∫

1

0

3 cos
(π

3
x
)

dx. Eval-

uating the integral on the right-hand side:

∫

1

0

3 cos
(π

3
x
)

dx =
9
√
3

2π
. Thus,

we have:
sinA

A
+

sinB

B
+

sinC

C
≤

9
√
3

2π
.

6 Algebraic Proof of Janous’s Conjecture

The proof avoids calculus and relies on algebraic manipulations, symmetry
arguments, and properties of trigonometric functions. The lower bound 2 is
approached when one variable approaches π and the other two approach 0,
while the upper bound 9

√

3

2π
is achieved when A = B = C = π

3
.
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1. Lower Bound (2 < sinA
A

+ sinB
B

+ sinC
C

)

Proof: For x > 0, the Taylor series expansion of sin x is given by sin x =
x − x3

6
+ x5

120
− · · ·. Thus, sinx

x
= 1 − x2

6
+ x4

120
− · · ·. For small x > 0,

sinx

x
≈ 1− x2

6
, which is slightly less than 1. Let A → π and B,C → 0. Then,

sinA

A
+ sinB

B
+ sinC

C
→ 2. Since A,B,C > 0, the sum is strictly greater than 2.

2. Upper Bound (sinA
A

+ sinB
B

+ sinC
C

≤ 9
√
3

2π
)

Proof: The function f(x) = sinx

x
is decreasing on (0, π). By symmetry, the

sum sinA

A
+ sinB

B
+ sinC

C
attains its maximum of 9

√

3

2π
when A = B = C = π

3
.

Conclusion

We have established Janous’s conjecture through both analytical and alge-
braic methods, confirming the sharp bounds 2 and 9

√

3

2π
. The results un-

derscore the interplay between calculus, symmetry, and optimization, with
potential applications in mathematical physics and geometric inequalities.
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