
International Journal of Mathematics and Computer Science
Volume 20, Issue no. 2, (2025), 529–537
DOI: https://doi.org/10.69793/ijmcs/02.2025/alsaffar

b b

M
CS

The Spectral of Convex Bounded Linear
Operators on Convex Normed Spaces

Saif R. Alsaffar, Jehad R. Kider

Department of Mathematics and Computer Applications
Faculty of Applied Sciences
University of Technology

Baghdad, Iraq

email: 100396@uotechnology.edu.iq, jehad.r.kider@uotechnology.edu.iq

(Received January 4, 2025, Accepted February 4, 2025,
Published February 5, 2025)

Abstract

We introduce the concept of a convex bounded operator and we

define the convex norm for convex bounded linear operator. The aim

of this research is to introduce the properties of the spectrum and

resolvent sets of convex bounded linear operators on convex normed

spaces.

1 Introduction

Alsaffar and Kider [1] introduced the concept of convex normed spaces with
its basic properties. Daher and Kider [2] introduced the concept of con-
vex fuzzy normed spaces with its basic properties. Rasha and Kider [3]
introduced further properties of the fuzzy complete a-fuzzy normed algebra.
Then, Kider [4] introduced the concept of the convex fuzzy metric space
and proved its basic properties. Eidi, Hameed and Kider [5] introduced the
convex fuzzy distance between two convex fuzzy compact sets.

Key words and phrases: Convex absolute value, Convex normed space,
Convex bounded operators,Convex norm for Convex bounded operators.
AMS (MOS) Subject Classifications: 46S99.
ISSN 1814-0432, 2025, https://future-in-tech.net



530 S.R. Alsaffar, J.R. Kider

2 Convex normed spaces

Definition 2.1. If the function AR : R → [0,∞) satisfies

(i) AR(λ) ∈ [0,∞), AR(λ) = 0 ⇐⇒ λ = 0.

(ii) AR(λδ) = AR(λ) ·AR(δ).

(iii) AR(λ + δ) ≤ σAR(λ) + µAR(δ). ∀ 0 < σ, µ < 1, with σ + µ = 1 and
∀ λ, δ ∈ R,

then (R,AR) is a convex absolute value space (or c-AVS).

Definition 2.2. Let V be an R-space over R, (R,AR) be a c-AVS, and N :
V → [0,∞) is a function. If N satisfies:

(i) 0 ≤ N (y) < ∞.

(ii) N (y) = 0 if and only if y = 0.

(iii) N (λy) = AR(λ)N (y), ∀λ ∈ R, λ 6= 0.

(iv) N (y + g) ≤ γN (y) + δN (g), where γ, δ ∈ (0, 1), γ + δ = 1, ∀y, g ∈ V,

then (V,N ) is a convex normed space (or c-NS).

Theorem 2.3. If (V1,N1) and (V2,N2) are two c-NS, then (V,N ) is a c-
NS, where V = V1×V2 and N [(y1, y2)] = γN1(y1)+δN2(y2) for all (y1, y2) ∈
V, for all γ, δ ∈ (0, 1) with γ + δ = 1.

Definition 2.4. Let (V,N ) be a c-NS.

(i) For any y ∈ V, let c − B(y, α) = {v ∈ V : N (y − v) < α}. Then
c− B(y, α) is a convex open ball with center y ∈ V and radius α > 0.

(ii) W ⊆ V is a convex open set (or simply c-OS) if c − B(w, α) ⊆ W for
any w ∈ W and for some α > 0.

Definition 2.5. Let (V,N ) be c-NS. If (yk) ∈ V, then we say that (yk)
is convex convergent to y ∈ V (in notation, uk → u when k → ∞) if ∀c −
B(y, α) ∃M such that yk ∈ c-B(y, α), ∀k ≥ M where α > 0. This is equivalent
to saying that ∀α > 0 ∃M ∈ N satisfies N (yk − y) < α, ∀k ≥ M. We also
use the notationa limk→∞ yk = y or limn→∞N (yk − y) = 0.

Definition 2.6. If (V,N ) is c-NS, then
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(i) Y ⊂ V is convex bounded (or simply CB) if ∃λ > 0 such that N (p) < µ,
∀p ∈ Y. Otherwise, Y is not CB.

(ii) a sequence (uk) in a c-NS (V,N ) is CB if ∃λ > 0 such that N (uk) < λ,
∀k ∈ N. Otherwise, (uk) is not CB.

Definition 2.7. Let (V,N ) be c-NS and let (yk) ∈ V. We say that (yk) is
convex Cauchy in V if ∀σ > 0, ∃M ∈ N such that N (yj−yp) < σ, ∀j, p ≥ M .

Definition 2.8. Let (V,N ) be c-NS. (V,N ) is called convex complete if ∀
convex Cauchy sequence (yk) ∈ V, ∃y ∈ V, such that yk → y.

Theorem 2.9. If (V1,N1) and (V2,N2) are two c-NS, then (V,N ) is convex
complete if and only if (V1,N1) and (V2,N2) are convex complete, where
V = V1 × V2 and N [(v1, v2)] = γN1(v1) + δN2(v2) for all (v1, v2) ∈ V where
γ + δ = 1.

Definition 2.10. If (V,NV) and (Y,NY) are two c-NS, then T : V → Y

is convex continuous at v ∈ V if ∀α > 0, ∃β > 0, NV(v − y) < β implies
NY[T (v) − T (y)] < α, ∀y ∈ Y. If this is true ∀v ∈ V, then T is convex
continuous on V.

Theorem 2.11. If (V,NV) and (Y,NY) are two c-NS, then the operator
T : V → Y is convex continuous at y ∈ V if and only if yk → y ∈ V implies
T (yk) → T (y) ∈ Y.

Theorem 2.12. If (V,NV) and (Y,NY) are two c-NS, then (i) ⇒ (ii) ⇒
(iii) ⇒ (i)

(i) The operator T : V → Y is convex continuous at v ∈ V;

(ii) T −1(Y) is c-OS in V for all c-OS subset Y of Y;

(iii) T −1(Y) is convex closed in V, ∀ convex closed Y ⊂ Y.

Definition 2.13. Suppose that (U,NU) and (V,NV) are c-NS. T : U → V

is convex bounded (or CB) if ∃µ > 0 and for each y ∈ U, such that
NV[T(y)] < µNU(y) . . . (1)

Notation 2.14. Suppose that (U,NU) and (V,NV) are two c-NS. Put CB(U,V) =
{T : U → V : T is a linear CB operator}.

Definition 2.15. Suppose that (U,NU) and (V,NV) are two c-NS. Define:
NCB(U,V)(T) = supy∈U NV(Ty), for all T ∈ CB(U,V).
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Remark 2.16. Equation (1) can be written as
NV[T(y)] < NCB(U,U)[T] · NU(y) . . . (2)

Theorem 2.17. If (U,NU) and (V,NV) are two c-NS, then (CB(U,V),NCB(U,V))
is a c-NS.

Proof.

(i) Since 0 ≤ NV(Ty) < ∞ with y ∈ U, so 0 ≤ NCB(U,V)(T) < ∞.

(ii) NCB(U,V)(T) = 0 ⇐⇒ supy∈U NV(Ty) = 0 ⇐⇒ NV(Ty) = 0 for all y ∈
U ⇐⇒ Ty = 0 for all y ∈ U ⇐⇒ T = 0.

(iii) For all α ∈ R with α 6= 0, we have NCB(U,V)(αT) = supy∈U NV(αTy) =
AR(α) supy∈U NV(Ty) = AR(α)NCB(U,V)(T).

(iv) NCB(U,V)[T1 + T2] = supy∈U NV((T1 + T2)y) ≤ δ1 supy∈U NV(T1y) +
δ2 supy∈U NV(T2y), where δ1, δ2 ∈ (0, 1) with δ1 + δ2 = 1. Thus,
nCB(U,V)[T1 + T2] ≤ δ1NCB(U,V)[T1] + δ2NCB(U,V)[T2].

Hence, (CB(U,V),NCB(U,V)) is a c-NS.

Theorem 2.18. Suppose that (U,NU) and (V,NV) are two c-NS. The linear
operator T : U → V is convex continuous if and only if T is CB.

Proof.
If T is convex continuous at y ∈ D(T), then ∀α > 0, ∃ǫ > 0 such that when
NV[Tz − Ty] < α, we have NU(z − y) < α, ∀z ∈ D(T). If W ⊆ D(T) is CB,
choose w 6= 0 ∈ W. Put w = z − y. Then, NV(Tw) = NV(T(z − y)) < σ. It
follows that T(W) is CB. Hence, T is CB.
Conversely, assume that T is CB. If α > 0 then ∀y ∈ D(T) satisfies:
NU(y) < α implies NV(Tu) < σ where σ > 0.
Thus, for w ∈ D(T), we have
NU(y − w) < α ⇒ NV(Ty − Tw) = NV(T(y − w)) < σ.
Hence, T is convex continuous at y. Since y was any vector in D(T), T is
convex continuous.

Theorem 2.19. Suppose that (U,NU) and (V,NV) are two c-NS. Then CB(U,V)
is convex complete if V is convex complete.

Proof.
The proof is direct.
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Definition 2.20. The linear functional f : (U,N ) → (R,AR) is CB if
∃µ > 0 such that AR[f(y)] < µ · N (y), ∀y ∈ U. Also, NCB(U,R)(f) =
supu∈U AR(fy), ∀f ∈ CB(U,R); that is, AR[f(y)] < NCB(U,R)(f) · N (y), ∀y ∈
U.

Definition 2.21. If (U,N ) is c-NS, then (CB(U,R),NCB(U,R)) is c-NS, where
CB(U,R) = {f : U → R : f is linear CB} andNCB(U,R)(f) = supu∈UAR(fu).
This is called the convex dual space of U.

By using Theorem 2.19 and the fact that the c-NS (R,AR) is convex
complete, we have the following theorem.

Theorem 2.22. If (U,N ) is c-NS, then the convex dual space CB(U,R) is
convex complete.

3 The Spectral of CB Linear operators

Definition 3.1. Let (U,N ) be c-NS and let S : D(S) → U be a linear op-
erator. Associate with S the operator Sα = (S − αI), where α ∈ C. If S−1

α

exists, then it is ℜα(S) = S−1
α = (S − αI)−1. The operator ℜα(S) is called

the resolvent operator (or resolvent) of S. For brevity, we write ℜα instead
of ℜα(S).

Definition 3.2. Let (U,N ) be c-NS and let S is a linear operator from
D(S) ⊆ U into U. With α ∈ C, the regular value α of S is such that:

(i) ℜα(S) exists.

(ii) ℜα(S) is convex bounded.

(iii) ℜα(S) is defined on W ⊆ D(S) and W = U.

The resolvent set ρ(S) = {α ∈ C : α is a regular value of S} and ρ(S)C =
C − ρ(S) = σ(S) is called the spectrum of S. Also, α ∈ σ(S) is called a
spectral value of S.

Remark 3.3. Let (U,N ) be c-NS and let S be a linear operator from D(S) ⊆
U into U. If ℜα(S) exists, then it is linear. Also, ℜα(S) : ℜ(Sα) → D(Sα)
exists ⇐⇒ Sα(z) = 0 ⇒ z = 0; that is, N(Sα) = {0}, where ℜ(Sα) is
the range of Sα. Hence, if Sα(z) = (S − αI)(z) = 0 for some z 6= 0, then
α ∈ σp(S); that is, α is an eigenvalue of S.
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Definition 3.4. Let (U,NU), (W,NW) be two c-NS and letS : U → W

be a linear operator. Then S is convex closed if G(S) = {(u, w) : u ∈
U, w = S(u)}, the graph of S, is convex closed in the c-NS (U × W, n),
where N [(u, w)] = γNU(u) + δNW(w) for all (u, w) ∈ U × W, and where
γ, δ ∈ (0, 1) with γ + δ = 1.

Theorem 3.5. Let (U,NU), (W,NW) be two c-NS and the linear operator
S : U → W. S is convex closed ⇐⇒ if uk → u with uk ∈ D(S) and
S(uk) → w, then u ∈ D(S) with S(u) = w.

Proof.
By the definition of G(S), it is convex closed ⇐⇒ z = (u, w) ∈ G(S) ⇐⇒
∃zk = (uk, S(uk)) ∈ G(S) such that uk → u, S(uk) → w and z = (u, w) ∈
G(S) ⇐⇒ u ∈ D(S) with S(u) = w.

Theorem 3.6. Let (U,NU), (W,NW) be two convex complete c-NS and let
S : U → W be a convex closed operator. If D(S) is convex closed in W, then
the operator S is CB and S is CB.

Proof.
(U × W,N ) is convex complete by Theorem 2.9. If G(S) is convex closed
in U × W and D(S) is convex closed in U, then G(S), D(S) are convex
complete. Let Y : G(S) → D(S) be defined by: Y[z, S(z)] = z Then Y is
linear and Y is CB since N (Y[z, S(z)]) = NU(z) ≤ γNU(z) + δNW[S(z)] =
N (Y[z, S(z)]), where γ, δ ∈ (0, 1) with γ + δ = 1. Since Y is bijective, we
can define Y−1 : D(S) → G(S) as: Y−1(z) = [z, S(z)]. So, Y−1 is CB,
say N [z, S(z)] ≤ σNU(z), with σ > 0, ∀z ∈ D(S). Thus, S is CB because
NW[S(z)] ≤ γNU(z) + δNW[S(z)] = N [z, S(z)] ≤ σNU(z), for all z ∈ D(S).

Proposition 3.7. Let S : U → W be a CB linear operator, where (U,NU)
and (W,NW) are two c-NS. Then

(i) S is convex closed if D(S) is a convex closed subset of U.

(ii) D(S) is a convex closed subset of U if S is convex closed and (W,NW)
is convex complete.

Proof.

(i) If (zk) ∈ D(S) and zk → z and S(zk) → w, since S is convex continuous,
then z ∈ D(S) = D(S) because D(S) is convex closed. Hence, S is
convex closed by Theorem 3.6.
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(ii) For z ∈ D(S), ∃(zk) ∈ D(S), zk → z because S is CB. NW[S(zk) −
S(zm)] = NW[S(zk − zm)] ≤ NCB(U,W)(S) · NU[zk − zm] But this implies
that (S(zk)) is convex Cauchy. So, S(zk) → w ∈ W because W is
convex complete. Since S is convex closed, z ∈ D(S) by Theorem 3.5
and S(z) = w. Hence, D(S) ⊆ D(S). Therefore, D(S) is convex closed.

Lemma 3.8. Let (U,N ) be c-NS and S : U → U be a linear operator and
α ∈ ρ(S). If S is convex closed, then ℜα(S) is defined on U and is CB.

Proof.
Since S is convex closed, so is Sα by Theorem 3.6. Hence, ℜα is convex closed
by (ii) of Definition 3.2. Thus, its domain D(ℜα) is convex closed by(ii)
Proposition 3.7. Thus (iii) of Definition 3.2 implies D(ℜα) = D(ℜα) = U.

Lemma 3.9. Let (U,N ) be c-N,S S : U → U be a linear operator, and
α ∈ ρ(S). If S is CB, then ℜα(S) is defined on U and is CB.

Proof.
Since D(S) = U is convex closed, S is convex closed by Theorem 3.6 and the
statement follows by Lemma 3.8.

Theorem 3.10. Let (U,N ) be convex complete c-NS and let S : U → U be
a linear operator. If NCB(U,U)(S) < 1, then (I − S)−1 exists as a CB linear
operator on U and (I− S)−1 =

∑∞

j=1 S
j.

Proof.
We know that NCB(U,U)(S

j) ≤ [NCB(U,U)(S)]
j for any j ∈ N. Also, since

NCB(U,U)(S) < 1, the series
∑∞

j=1[NCB(U,U)(S)]
j is convex convergent. Hence,

the series
∑∞

j=1 S
j is absolutely convex convergent for NCB(U,U)(S) < 1. Since

U is convex complete, so is CB(U,U) by Theorem 2.19. Let T =
∑∞

j=1 S
j .

Now, we will show that T = (I−S)−1. Consider (I−S)(I+S+S2+· · ·+Sn) =
(I+S+S2+ · · ·+Sn)(I−S) = I−Sn+1. As n → ∞, we get Sn+1 → 0 because
NCB(U,U)(S) < 1. Thus, we have (I− S)T = T(I− S). Hence, T = (I− S)−1.

Theorem 3.11. Let (U,N ) be convex complete c-NS and let S : U → U be
a linear operator. If S is CB, then the resolvent set ρ(S) is a convex open set
in C. Hence, the spectrum σ(S) is a convex closed set in C.

Proof.
If ρ(S) = ∅, then it is convex open. Let ρ(S) 6= ∅. For fixed α0 ∈ ρ(S) and
any α ∈ C, we have (S− αI) = (S− α0I+ α0I− αI) =
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(S− α0I)− (α− α0)I = (S− α0I)[I− (α− α0)](S− α0I)
−1. Let

H = [I− (α− α0)](S− α0I)
−1. Then

Sα = S− αI = Sα0H . . . (3)
where H = I− (α− α0)ℜα0 . Since α0 ∈ ρ(S) and S is CB, Lemma 3.9
implies that ℜα0 = S−1

α0
∈ CB(U,U). Moreover, Theorem 3.10 implies that

H has an inverse H−1 =
∑∞

j=0 [(α− α0)ℜα0 ]
j =

∑∞

j=0

[

(α− α0)
jℜj

α0

]

in
CB(U,U) for all α such that nCB(U,U)((α− α0)ℜα0) < 1; that is,

AC[(α− α0)] <
1

NCB(U,U)((α−α0)ℜα0 )
. . . (4)

Since S−1
α0

= ℜα0 ∈ CB(U,U), using this and (3), for all α fulfilling (4), the
inverse of Sα exists

ℜα = S−1
α = [Sα0H ]−1 = H−1ℜα0 . . . . (5)

Hence, (4) introduces a convex ball of α0 consisting of regular values α of S.
Since α0 ∈ ρ(S) was arbitrary, we conclude that ρ(S) is convex open which
implies that σ(S) is convex closed since σ(S) = ρ(S)C . By using equation
(5), we immediately have the next result.

Theorem 3.12. If (U,N ) is convex complete c-NS and S : U → U is a CB
linear operator, then for every α0 ∈ ρ(S), the resolvent ℜα(S) has the
representation ℜα =

∑∞

j=0

[

(α− α0)
jℜj+1

α0

]

. . . (6).

Proof.
The infinite series

∑∞

j=0

[

(α− α0)
jℜj+1

α0

]

is convex absolutely convergent for

all α in the convex open ball given by AC[(α− α0)] <
1

NCB(U,U)((α−α0)ℜα0 )
in

the complex plane. This open ball is a subset of ρ(S).

Theorem 3.13. If (U,N ) is convex complete c-NS and S : U → U is a
linear operator, then the spectrum σ(S) is convex compact and lies in the
open ball AC(α) ≤ NCB(U,U)(S). Hence, ρ(S) 6= ∅.

Proof.
Let α 6= 0 and β = 1

α
. Then, from Theorem 3.12, we have the representation

ℜα = (S− αI)−1 = − 1
α
(I− βS)−1 = − 1

α

∑∞

j=0(βS)
j = − 1

α

∑∞

j=0

(

1
α
S
)j

,

where, by Theorem 3.11, the infinite series converges for all α such that

NCB(U,U)

(

1
α
S
)

=
NCB(U,U)(S)

AC(α)
< 1; that is, NCB(U,U)(S) < AC(α). The same

Theorem also shows that any α ∈ ρ(S). Hence, σ(S) must lie in the convex
open ball(6) so that σ(S) is CB. Moreover, σ(S) is convex closed by
Theorem 3.12. Consequently, σ(S) is convex compact.

Definition 3.14. Let (U,N ) be convex complete c-NS and let
S ∈ CB(U,U). Then, the spectrum radius rσ(S)(S) of an operator S is
defined by rσ(S)(S) = supα∈σ(S) AC(α).
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Remark 3.15. From (6) we see that rσ(S)(S) ≤ NCB(U,U)(S).
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