International Journal of Mathematics and Computer Science Volume **20**, Issue no. 2, (2025), 619–624 DOI: https://doi.org/10.69793/ijmcs/02.2025/akeel

Reg-*N***-Flat Modules**

Ali Jawad Majid, Akeel Ramadan Mehdi

Mathematics Department Education College University of Al-Qadisiyah Al Diwaniyah, Qadisiyyah Province, Iraq

email: edu.math.post24.17@qu.edu.iq, akeel.mehdi@qu.edu.iq

(Received January 22, 2025, Accepted February 19, 2025, Published March 10, 2025)

Abstract

Let R represent a ring. As a suitable generalization of N-flat (resp. flat) module, we present and investigate the concept of Reg-N-flat (resp. Reg-flat) right R-module. We give many properties and characterizations of these modules.

1 Introduction

In this paper, R represents an associative ring that has 1 and any module is unitary. Mod-R (resp. R-Mod) is the symbol for the right (resp. left) R-module category. If $M \in R$ -Mod and L is a submodule of M with $0 \to D \otimes L \to D \otimes M$ is exact for all $D \in Mod-R$, then L is called pure in M [1]. If every submodule of a module $N \in R$ -Mod is pure, then N is called regular [2]. The notation $N \leq^{reg} M$ (resp., $N \leq^{fgreg} M$) means N is a regular (resp., a finitely generated regular) submodule of M. $\text{Reg}(M) = \sum \{N : N \leq^{reg} M\}$. As usual, $M^* = \text{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$. In the literature, there are numerous generalizations of injectivity and module flatness provided [3], [4], [5], [6], [7], [8], [9], [10], [11], [12] and [13].

In this article, we present and examine Reg-*N*-flatness (resp. Reg-flatness)

Key words and phrases: Reg-*N*-flat module, Reg-*N*-injective module, regular submodule.

AMS (MOS) Subject Classifications: 16D40, 16D50, 16E30, 16P20. **ISSN** 1814-0432, 2025, https://future-in-tech.net of modules which are a proper generalization of N-flatness (resp. flatness) of modules. Let N be in R-Mod and C be in Mod-R. C is then said to be Reg-*N*-flat if, for any $A \leq^{reg} N$, we get the exactness of $0 \to C \otimes_R A \xrightarrow{I_C \otimes i_A} A$ $C \otimes_R N$. A module C is said to as Reg-flat if it is Reg-R-flat. If all left Rhomomorphisms from any $A \leq^{reg} B$ into C extend to B, then we say that a module C is Reg-B-injective (with B in R-Mod). When C is Reg-R-injective, it is referred to as Reg-injective. The notation $(\text{Reg-}N\text{-}\mathbb{F})_R$ (resp. $(\text{Reg-}\mathbb{F})_R$) $_{R}(\text{Reg-}N-\mathbb{I}), R(\text{Reg-}\mathbb{I}))$ means the class of Reg-N-flat right (resp. Reg-flat right, Reg-*N*-injective left, Reg-injective left) modules. Several properties of Reg-*N*-flat right (resp. Reg-flat right) modules are given. We prove (Reg- $N-\mathbb{F}_R$ and $(\operatorname{Reg}-\mathbb{F})_R$ are closed classes under isomorphisms, direct limits, direct sums, and direct summands. A version of Jinzhong Theorem [14, Theorem 1.1] for Reg-flat modules is given; that is, if a ring R is commutative and a module L is simple, we demonstrate that $L \in \operatorname{Reg}$ -F iff $L \in \operatorname{Reg}$ -I. We give several characterizations of Reg-N-flat modules; for example, we show that D is an Reg-N-flat module if and only if the exactness of $0 \to D \otimes_R K \xrightarrow{I_D \otimes i_K} D \otimes N$ holds for any $K \leq^{reg} N$ with K being finitely generated.

2 Reg-*N*-Flat Modules

Definition 2.1. Let $N \in R$ -Mod and $M \in Mod-R$. We say that M is Reg-N-flat if, for any $K \leq^{reg} N$, the sequence $0 \to M \otimes_R K \xrightarrow{I_M \otimes i_K} M \otimes N$ is exact, where $i_K : K \to N$ and $I_M : M \to M$ are the inclusion homomorphism and the identity homomorphism, respectively. A module M is referred to as Reg-flat if it is Reg-R-flat.

Examples 2.2. (1) Let $N \in R$ -Mod. If Reg(N) = 0, then all right *R*-modules are Reg-*N*-flat.

(2) Let $N \in R$ -Mod. Clearly, every N-flat (resp. flat) right R-module is Reg-N-flat (resp. reg-flat). In general, the converse is not true. Since $\langle 0 \rangle$ is the only regular ideal of \mathbb{Z} , we have $Reg(\mathbb{Z}_{\mathbb{Z}}) = 0$. By (1) above, all \mathbb{Z} modules are Reg- \mathbb{Z} -flat (= Reg-flat). So, \mathbb{Z}_n is Reg- \mathbb{Z} -flat (Reg-flat) but it is not \mathbb{Z} -flat (= flat), for $n \geq 2$.

Theorem 2.3. Let $L \in R$ -Mod and $N \in Mod-R$. Then $N \in (Reg-L-\mathbb{F})_R$ iff $N^* \in {}_R(Reg-L-\mathbb{I})$.

Proof. Straightforward.

620

Reg-N-flat modules

If $\mathcal{G} \subseteq R$ -Mod and $\mathcal{F} \subseteq Mod-R$, then the pair $(\mathcal{F}, \mathcal{G})$ is referred to as almost dual if \mathcal{G} is closed under direct products and summands and for any $M \in Mod-R, M \in \mathcal{F} \Leftrightarrow M^* \in \mathcal{G}$ [3].

Proposition 2.4. $((Reg-N-\mathbb{F})_{R,R}(Reg-N-\mathbb{I}))$ is an almost dual pair.

Proof. Since $_R(\text{Reg-}N\text{-}\mathbb{I})$ is a closed class under direct products and summands, the result follows from Theorem 2.3.

The proof of the next corollary follows directly from [15, Proposition 4.2.8(1,3)] and Proposition 2.4.

Corollary 2.5. The class $(Reg-N-\mathbb{F})_R$ is closed under pure extensions, pure submodules, pure homomorphic images, direct limits, and direct sums.

Proposition 2.6. Let $M \in Mod$ -R and $N \in R$ -Mod. Then M is Reg-N-flat iff the sequence $0 \to M \otimes_R K \xrightarrow{I_M \otimes i_K} M \otimes N$ is exact for any $K \leq^{fgreg} N$.

Proof. (\Rightarrow) . This is clear.

(\Leftarrow). Let $K \leq^{reg} N$. Let $\sum_{i=1}^{n} m_i \otimes k_i \in \ker(I_M \otimes i_K)$. Since $\sum_{i=1}^{n} m_i \otimes k_i \in M \otimes_R K$ with $(I_M \otimes i_K)(\sum_{i=1}^{n} m_i \otimes k_i) = 0$ in $M \otimes_R N$, we have $\sum_{i=1}^{n} m_i \otimes k_i = 0$ in $M \otimes_R N$. Let $K' = \langle k_1, k_2, \cdots, k_n \rangle$. Since $K \leq^{reg} N$, we have $K' \leq^{reg} N$ (by [2, Theorem 6]). Thus $0 \to M \otimes_R K' \xrightarrow{I_M \otimes i_K'} M \otimes N$ is an exact sequence (by hypothesis) and hence $\ker(I_M \otimes i_{K'}) = 0$ in $M \otimes_R K'$. Since $\sum_{i=1}^{n} m_i \otimes k_i \in M \otimes_R K'$, we have $\sum_{i=1}^{n} m_i \otimes k_i \in K$ ($I_M \otimes I_K'$). Thus $\sum_{i=1}^{n} m_i \otimes k_i = 0$ in $M \otimes_R K'$. Since $M \otimes_R K' \subseteq M \otimes_R K'$. Thus $\ker(I_M \otimes i_K) = 0$ and hence $I_M \otimes i_K$ is a monomorphism. Thus, M is a Reg-N-flat right R-module.

Corollary 2.7. Let $M \in \text{Mod-}R$. Then M is Reg-flat iff the sequence $0 \to M \otimes_R L \xrightarrow{I_M \otimes i_L} M \otimes_R R$ is exact, for every $L \leq^{fgreg} {}_R R$.

Theorem 2.8. Let $N \in R$ -Mod and $M \in Mod-R$ and consider the next statements:

- (1) $M \in (Reg \cdot N \cdot \mathbb{F})_R$.
- (2) $\operatorname{Tor}_1(M, N/K) = 0$, for any $K \leq^{reg} N$.
- (3) $\operatorname{Tor}_1(M, N/K) = 0$, for any $K \leq^{fgreg} N$.

Then $(2) \Rightarrow (3) \Rightarrow (1)$. Moreover, when N is flat, then the three statements are equivalent. *Proof.* $(2) \Rightarrow (3)$. This is obvious.

 $(3) \Rightarrow (1)$. Let $L \leq^{fgreg} N$. Thus the sequence $\operatorname{Tor}_1(M, N/L) \to M \otimes_R L \to M \otimes_R N$ is exact, by [16, Theorem X.II.5.4(4)]. Since $\operatorname{Tor}_1(M, N/L) = 0$, we have the exactness of $0 \to M \otimes_R L \to M \otimes_R N$ for any $L \leq^{fgreg} N$. By Proposition 2.6, M is Reg-N-flat.

(1) \Rightarrow (2). Let $K \leq^{reg} N$. By hypotheses, the sequence $0 \rightarrow M \otimes_R K \rightarrow M \otimes_R N$ is exact. By [16, Theorem X.II.5.4(4)], the sequence $\operatorname{Tor}_1(M, N) \rightarrow \operatorname{Tor}_1(M, N/K) \rightarrow M \otimes_R K \rightarrow M \otimes_R N$ is exact. Since N is flat, we get from [16, Theorem X.II.5.4(2)] that $\operatorname{Tor}_1(M, N) = 0$. Since $0 \rightarrow M \otimes_R K \rightarrow M \otimes_R N$ is exact, we have $\operatorname{Tor}_1(M, N/K) = 0$.

Corollary 2.9. Let $M \in Mod-R$. Then the next statements are equivalent: (1) M is Reg-flat.

- (2) $\operatorname{Tor}_1(M, R/I) = 0$, for each $I \leq^{reg} {}_R R$.
- (3) $\operatorname{Tor}_1(M, R/I) = 0$, for each $I \leq^{fgreg} {}_RR$.

Proof. Take $N = {}_{R}R$ and apply Theorem 2.8.

The following lemma is easy to prove.

Lemma 2.10. Let $M, N \in R$ -Mod. If $\text{Ext}^1(N/L, M) = 0$ for all $L \leq^{reg} N$, then M is Reg-N-injective.

Proposition 2.11. Consider the following conditions for a commutative ring R and $M, N \in R$ -Mod.

(1) M is Reg-N-flat.

(2) $\operatorname{Hom}_{R}(M, K) \in {}_{R}(\operatorname{Reg-N-I}), \text{ for any injective module } K.$

(3) $M \otimes_R K \in (Reg-N-\mathbb{F})_R$, for any flat module K.

Then $(2) \Rightarrow (3) \Rightarrow (1)$. Moreover, if N is a flat module, then $(1) \Rightarrow (2)$.

Proof. (2) ⇒ (3). Since K is a flat module, K^* is injective. Thus Theorem 2.75 in [17, p.92] implies that $(M \otimes_R K)^* \cong \operatorname{Hom}_R(M, K^*)$. By (2), $(M \otimes_R K)^* \in {}_R(\operatorname{Reg-}N-\mathbb{I})$ and so $M \otimes_R K \in (\operatorname{Reg-}N-\mathbb{F})_R$ (by Theorem 2.3).

(3) \Rightarrow (1). By flatness of $K = {}_{R}R, M \otimes_{R} R$ is a Reg-*N*-flat module. Since $M \cong M \otimes_{R} R$, we have *M* is Reg-*N*-flat.

(1) \Rightarrow (2). Let N (resp. K) be a flat (resp. an injective) module and let $L \leq^{reg} N$, thus $\text{Ext}^1(N/L, \text{Hom}_R(M, K)) \cong \text{Hom}_R(\text{Tor}_1(M, N/L), K)$. Since M is a Reg-N-flat module and N is a flat module (by hypothesis), $\text{Tor}_1(M, N/L) = 0$ (by Theorem 2.8) and hence $\text{Hom}_R(\text{Tor}_1(M, N/L), K) =$ 0. Thus $\text{Ext}^1(N/L, \text{Hom}_R(M, K)) = 0$ and so from Lemma 2.10 we get $\text{Hom}_R(M, K)$ is a Reg-N-injective module.

622

Reg-N-flat modules

Proposition 2.12. Let M be a module with ML = 0 for any regular proper ideal L of a commutative ring R. If $M \in {}_{R}(Reg-F)$, then End(M) is Reginjective as R-module.

Proof. Let $L \leq^{reg} {}_{R}R$ with $L \neq R$ and a module M be Reg-flat. By hypothesis, ML = 0. Since M is Reg-flat, we have $M \otimes_{R} L \cong ML = 0$. By [17, Theorem 2.76, p.93], $0 = \operatorname{Hom}_{R}(M \otimes_{R} L, M) \cong \operatorname{Hom}_{R}(L, \operatorname{End}(M))$. By [16, Theorem XII.4.4(3), p.491], the sequence $0 = \operatorname{Hom}_{R}(L, \operatorname{End}(M)) \to \operatorname{Ext}^{1}(R, \operatorname{End}(M)) = 0$ is exact and hence $\operatorname{Ext}^{1}(R/L, \operatorname{End}(M)) = 0$. Thus $\operatorname{End}(M)$ is a Reg-injective as R-module, by Lemma 2.10. □

Assume that the ring R is commutative. End(M) is a Reg-injective as an R-module if M is a Reg-flat semisimple module.

Corollary 2.13. Let R be a commutative ring. End(M) is a Reg-injective as an R-module if M is a Reg-flat semisimple module.

Proof. Use [18, Theorem 9.2.1, p. 218] and Proposition 2.12. \Box

The following theorem is a version of Jinzhong Theorem [14, Theorem 1.1] for Reg-flat modules.

Theorem 2.14. If M is a simple module over a ring R that is commutative. Then $M \in (Reg \cdot \mathbb{F})_R$ iff $M \in {}_R(Reg \cdot \mathbb{I})$.

Proof. Use Corollary 2.13, [19, Corollary 18.19, p.212] and [19, Proposition 18.14, p. 210]. \Box

Acknowledgment. The authors express their gratitude to the referees for their insightful remarks and recommendations.

References

- P. M. Cohn, On the free product associative rings, I', Math. Z., 71, (1959), 380–398.
- [2] D. J. Fieldhouse, Regular rings and modules, Journal of the Australian Mathematical Society, 13, no. 4, (1972), 477–491.
- [3] A. R. Mehdi, On a class of soc-injective modules, Iranian Journal of Mathematical Sciences and Informatics, 18, no. 2, (2023), 51–65.

- [4] Z. A. Zone, A. R. Mehdi, On a generalization of small-injective modules, Iraqi Journal of Science, 65, no. 5, (2024), 2649–2658.
- [5] H. H. Chyad, A. R. Mehdi, On SAS-injective rings, Iraqi Journal of Science, 65, no. 7, (2024), 3967–3974.
- [6] A. R. Mehdi, Purity relative to classes of finitely presented modules, J. Algebra Appl., 12, no. 8, (2013), 1350050
- [7] A. R. Mehdi, On *L*-injective modules, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28, no. 2, (2018), 176–192.
- [8] A. R. Mehdi, D. T. Abd Al-Kadhim, (ρ, m) -N-injective modules, J. Phys.: Conf. Ser. **1234 012098**, (2019), 1–10.
- [9] A. R. Mehdi, M. Prest, Almost dual pairs and definable classes of modules, Comm. Algebra 43, no. 4, (2015), 1387–1397.
- [10] E. A. Naim, A. R. Mehdi, On gs-pseudo-injective modules, Journal of Discrete Mathematical Sciences and Cryptography, 25, no. 5, (2022), 1535–1545.
- [11] Z. Zhanmin, *I-n*-Coherent rings, *I-n*-Semihereditary rings, and *I*-regular rings, Ukrainian Math. J., 66, no. 6, (2014), 857-883.
- [12] A. R. Mehdi, A. R. Obaid, Definability of the class of SAS-flat modules, Int. J. Math. Comput. Sci., 19, no. 4, (2024), 1137–1142
- [13] A. R. Obaid, A. R. Mehdi, SAS-N-flat modules, Journal of Discrete Mathematical Sciences and Cryptography, to appear.
- [14] X. Jinzhong, Flatness and injectivity of simple modules over a commutative ring, Commun. Algebra, 19, no. 2, (1991), 535–537.
- [15] A. R. Mehdi, Purity relative to classes of finitely presented modules, PhD Thesis, Manchester University, 2013.
- [16] P. A. Grillet, Abstract Algebra, 2nd edition, GTM 242, Springer, 2007.
- [17] J. J. Rotman, An Introduction to Homological Algebra, Springer, 2009.
- [18] F. Kasch, Modules and Rings, Academic Press, New York, 1982.
- [19] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, Berlin-New York, 1974.