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Abstract

This paper is concerned with a model of disease transmission in

predator-prey, predator cannibalism, and harvesting. We demonstrate

that the model’s solution is bounded and positive. Then, we inves-

tigate each potential equilibrium point’s existence and stability. The

local stability of the model around each equilibrium point is studied

by the linearizing the system using Jacobian Matrix, while the global

stability is performed by defining a Lyapunov function. The model

has six equilibria, which are conditionally locally asymptotically sta-

ble. Global stability analysis performed shows that all equilibria are

conditionally globally asymptotically stable. To support our analyti-

cal findings, we also perform numerical simulations.
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1 Introduction

The predator-prey models are an essential topic to study in ecology, as these
interactions are crucial to understanding population dynamics and ecosystem
balance.

In addition to the ecological model, the epidemiological model is devel-
oped to predict the spread of infectious diseases in populations. This model
is based on assumptions about the interactions between susceptible and dis-
ease prey. In the context of ecology, the epidemiological model is used to
understand how diseases can affect prey and predator populations, including
[1, 2]. Research in epidemiology is expanding to consider other factors, such
as harvesting and cannibalism. The predator-prey model with harvesting
was introduced by a few researchers [3, 4, 5] who were showing the effect of
selective harvesting on predator-prey systems.

Furthermore, cannibalism is also a phenomenon in predators. Cannibal-
ism occurs when predators consume members of their species in order to
environmental pressure. This phenomenon can help stabilize predator popu-
lations by reducing competition within the species or controlling the number
of predators when prey declines. A number of researchers have examined
the mathematical model of cannibalism [6, 7] and have developed models ac-
counting for cannibalism, exploring its effects on predator-prey interactions.
Therefore, cannibalism is an important aspect that needs to be considered
in predator-prey models.

This study is a combination of the research of the predator-prey model
with disease in the prey [1] by including harvesting in prey and predator [?],
as well as the effect of cannibalism on predators [6]. This model’s simula-
tion results and dynamical analysis are expected to provide in-depth insights
into complex interactions in predator-prey ecosystems. Previous models [8]
addressed disease in prey and predator cannibalism but did not consider har-
vesting in both species. Our modification presents substantial impacts on the
overall dynamics compared to earlier models.

2 Model Development and Basic Properties

Several assumptions led to the formation of this model, which divides prey
into susceptible and infected categories. Susceptible prey is a population with
an intrinsic growth rate (r) and environmental carrying capacity (k). There is
natural mortality in disease prey and predators; predators are cannibalistic,
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and there is harvesting in both disease prey and predator.

dxs

dt
= rxs

(

1−
xs + xi

k

)

− a1xsy − cxsxi − exs,

dxi

dt
= cxsxi − a2xiy − δxi,

dy

dt
= −µy + d1xsy + d2xiy −

βy2

q + y
+ γy − hy.

(2.1)

where xs, xi, y represent susceptible prey, disease prey, predator, r, k, e,
a1, c, a2, δ, µ, d1, d2, β, q, γ, h respectively represent intrinsic per capita
growth rate of prey population, carrying capacity, constant harvesting effort
in prey, maximum consumption rate of predator population, disease trans-
mission rate in prey population, attack rate of disease prey, natural death
rate of disease prey, natural death rate of predator population, conversion
rate of susceptible prey, conversion rate of disease prey, harvesting in prey
population, maximum consumption rate of predator population, conversion
of cannibalism into predator birth, constant harvesting effort in predator,
with the following initial conditions xs(0) > 0, xi(0) > 0, y(0) > 0.

The basic properties of model 2.1 present theorems that the model’s so-
lutions are non-negative and bounded.

Theorem 2.1. If the initial condition xs(0) ≥ 0, xi(0) ≥ 0, and y(0) ≥ 0,
then the solution of the model is xs(t) ≥ 0, xi(t) ≥ 0, and y(t) ≥ 0 ∈ R

3
+ for

t > 0.

Proof. If xs(0) = 0, then

dxs

dt
= rxs

(

1−
xs + xi

k

)

− a1xsy − cxsxi

ln xs =

∫
[

r

(

1−
xs + xi

k

)

− a1y − cxi

]

dt

xs = xs(0)e
∫
[r(1−xs+xi

k )−a1y−cxi]dt > 0.

By using the same approach, we get xi = xi(0)e
∫
[cxs−a2y−δ]dt > 0 and y =

y(0)e
∫
[−µ+d1xs+d2xi−

βy
q+y

+γ]dt > 0. But eu > 0. Since xs(0) > 0, xi(0) > 0, and
y(0) > 0, we have xs(t) ≥ 0, xi(t) ≥ 0, and y(t) ≥ 0. Consequently, the
solution of the model is always positive.

Theorem 2.2. All solutions of model 2.1 in the region Ω = {(xs+xi+ y) <
w
ρ
∈ R

3
+} are uniformly bounded.
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Proof. Choose a function defined by v(t) = xs(t)+xi(t)+y(t), where xs > 0,
xi > 0, y > 0 has the first derivative.

dv

dt
+ ρv =

dxs

dt
+

dxi

dt
+

dy

dt
+ ρ(xs + xi + y)

= rxs

(

1−
xs + xi

k

)

− a1xsy − cxsxi − exs + cxsxi − a2xiy − δxi

− µy − hy + d1xsy + d2xiy −
βy2

q + y
+ γy + ρ(xs + xi + y),

If d1 < a1 and d2 < a2, then

dv

dt
+ ρv < rxs

(

1−
xs

k

)

+ ρxs − (ρ− δ)xi + (γ − µ− h + ρ)y.

By choosing ρ < min{δ, µ+ h− γ}, we have

dv

dt
+ ρv < rxs

(

1−
xs

k

)

+ ρxs = −
r

k

(

xs −
(r + ρ)k

2r

)2

+
k

4r
(r + ρ)2 ≤

k

4r
(r + ρ)2.

Thus, dv
dt

+ ρv(t) ≤ w, where w = k
4r
(r + ρ)2. It is easy to show that the

solution of the first order differential inequality satisfies v(t) < w
ρ
+ (v(0)−

w
ρ
)e−ρt. Since limt→∞ e−ρt = 0, it is clear that v(t) is uniformly bounded,

which also means that all solutions of 2.1 are uniformly bounded.

3 Equilibrium Points and Stability

We find an equilibrium point of the equation by equating the following equa-
tion. The equilibrium points and their existence conditions are illustrated in
Figure 1.
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Figure 1: Equilibrium points and existence conditions

The eigenvalues of the Jacobian matrix are used to determine the linear
approximation around each equilibrium point in order to investigate the local
stability behavior of the model 2.1.

J =









r − 2rxs

k
− rxi

k
− a1y − cxi − e 2rxs

k
− cxs −a1xs

cxi cxs − a2y − δ −a2xi

d1y d2y −µ + d1xs + d2xi + γ − h−
2βy(q+y)−βy2

(q+y)2









.

(3.2)
Additionally, the following theorem yields the result.

Theorem 3.1. The following Theorem describes the model’s equilibrium points’

local stability.

i. The equilibrium E0 = (0, 0, 0) is locally asymptotically stable if r < e

and γ > µ+ h.

ii. E1 =
(

0, 0, (µ−γ−h)q
γ−µ−β−h

)

is locally asymptotically stable if r < a1
(µ−γ+h)q
γ−µ−β−h

+
e.

iii. E2 =
(

(r−e)k
r

, 0, 0
)

is locally asymptotically stable if k < min
{

δr
c(r−e)

,
r(µ+h−γ)
d1(r−e)

}

and r > 2e.

iv. E3 =
(

x∗

s, 0,
rk−ek−rx∗

s

a1k

)

is locally asymptotically stable.
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v. E4 =
(

δ
c
, rkc−δ−ekc

c(ck+r)
, 0
)

is locally asymptotically stable

vi. E5 = (x∗

s, x
∗

i , y
∗) is locally asymptotically stable if ρ1 > 0, ρ3 > 0, and

ρ1ρ2 − ρ3 > 0.

Proof. i. The eigenvalues of the Jacobian matrix E0 are λ1 = r − e,
λ2 = −δ < 0, and λ3 = γ − µ − h. Then E0 is locally asymptotically
stable if r > e, and γ > µ+ h.

ii. The eigenvalues of the Jacobian matrix E1 are λ1 = r − a1
(µ−γ+h)q
γ−µ−β−h

,

λ2 = −a2
(µ−γ+h)q
γ−µ−β−h

− δ < 0, and λ3 = − βqy∗

(q+y∗)2
< 0. So, E1 is locally

asymptotically stable if r < a1
(µ−γ−h)q
γ−µ−β−h

.

iii. The eigenvalues of the Jacobian matrix E2 are λ1 = 2e − r, λ2 =
ck − δ − cek

r
< 0, and λ3 = γ + d1k − µ − h − d1ek

r
. So E2 is locally

asymptotically stable if r > e, and k < min
{

δr
c(r−e)

,
r(µ+h−γ)
d1(r−e)

}

.

iv. The eigenvalues ofE3 = (x∗

s, 0,
rk−ek−rx∗

s

a1k
) are λ1 = cx∗

s−δ−a2
(rk−ek−rx∗

s)
a1k

<

0 and λ2,3 fulfilled J1(E3) =

∣

∣

∣

∣

∣

− rx∗

s

k
−a1x

∗

s

d1y
∗ − βqy∗

(q+y∗)2

∣

∣

∣

∣

∣

. Then, we get det(J1(E3)) >

0 and Trace(J1(E3)) < 0, so E3 is locally asymptotically stable.

v. The eigenvalues from E4 are λ1 = γ−µ−h+d1
δ
c
+d2

rkc−rδ−ekc
ck+r

< 0, if γ+

d1
δ
c
+d2

rkc−rδ−ekc
ck+r

< µ+h. λ2,3 fulfilled characteristic equation J1(E4) =
∣

∣

∣

∣

−rδ
ck

−δ(r+ck)
ck

rkc−ekc−rδ
ck+r

0

∣

∣

∣

∣

, then we get det(J1(E4)) =
(ekc+rδ−rkc)(δ(2r−ck))

(ck+r)ck
>

0 if ck
2
> r and trace(J1(E4)) < 0. So, E4 locally asymptotically stable.

vi. By substituting E5 = (x∗

s, x
∗

i , y
∗) to the the Jacobian matrix 3.2, we

get

J(E5) =





B11 − λ B12 B13

B21 B22 − λ B23

B31 B32 B33 − λ



 , (3.3)

with

B11(E5) = − rx∗

s

k
, B12(E5) =

rx∗

s

k
− cx∗

s, B13(E5) = a1x
∗

s, B21(E5) = cx∗

i ,
B22(E5) = cx∗

s−a2y
∗−δ, A23(E5) = −a2x

∗

i , B31(E5) = d1y
∗, B32(E5) =

d2y
∗, B33(E5) = − βqy∗

(q+y∗)2
.

The characteristic equation corresponds to the Jacobian matrix.
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λ3 + ρ1λ
2 + ρ2λ + ρ3 = 0, with ρ1 = −ρ̃1, ρ2 = −ρ̃2, and ρ3 = −ρ̃3

ρ1 = B11 +B22 +B33,

ρ2 = B13B31 +B12B21 +B23B32 − B11B22 −B22B33 − B11B33,

ρ3 = B11B22B33 +B12B23B31 +B13B21B32 − B11B23B32 − B22B13B31 − B33B12B21.

E5 is locally asymptotically stable according to the Hurwitz criterion
ρ1 > 0, ρ1ρ2 > ρ3, and ρ3 > 0, and unstable if neither of these condi-
tions is met.

We shall prove the global stability of the model by constructing a suitable
Lyapunov function.

Theorem 3.2. The coexistence equilibrium E5 = (x∗

s, x
∗

i , y
∗) of the model

2.1 is globally asymptotically stable if l1r
K

>
(l1a1+l3d1)

2

2
and lβq

(q+y∗)(q+y)
>

(l1a1+l3d1)
2

2
.

Proof. The theorem can be proven by defining a Lyapunov function V3 =
V31 + V32 + V33, where

V3(xs, xi, y) = l1

(

xs − x∗

s − x∗

s ln
xs

x∗

s

)

+l2

(

xi − x∗

i − x∗

i ln
xi

x∗

i

)

+l3

(

y − y∗ − y∗ ln
y

y∗

)

.

So, we get the derivative of V3(xs, xi, y).

dV3

dt
=−

l1r

k
(xs − x∗

s)
2 −

l3βq(y − y∗)2

(q + y∗)(q + y)
−

(

l1r

k
+ l1c− l2c

)

(xs − x∗

s)(xi − x∗

i )

+ (l1a1 − l3d1) (xs − x∗

s)(y − y∗)− (l2a2 − l3d2) (xi − x∗

i )(y − y∗).

If l1 = 1, l2 =
r
kc

+ 1, l3 =
(

r
kc

+ 1
)

a2
d2
, then

dV3

dt
≤−

l1r

k
(xs − x∗

s)
2 −

l3βq(y − y∗)2

(q + y∗)(q + y)
+

(l1a1 + l3d1)
2

2
(xs − x∗

s)
2 +

(l1a1 + l3d1)
2

2
(y − y∗)2.

=−

[

l1r

k
−

(l1a1 + l3d1)
2

2

]

(xs − x∗

s)
2 −

[

l3βq

(q + y∗)(q + y)
−

(l1a1 + l3d1)
2

2

]

(y − y∗)2.

So, dV3

dt
≤ 0 if l1r

k
>

(l1a1+l3d1)2

2
and l3βq

(q+y∗)(q+y)
>

(l1a1+l3d1)2

2
.

4 Numerical Simulation

Model 2.1 is numerically simulated in this section using Runge-Kutta 4th
order. Confirmation of the dynamics analysis conclusions and the existence
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Figure 2: Numerical
Simulation of E0

Figure 3: Numerical
Simulation of E1

Figure 4: Numerical
Simulation of E2

Figure 5: Numerical
Simulation of E3

Figure 6: Numerical
Simulation of E4

Figure 7: Numerical
Simulation of E5

of equilibrium points are the goals of the numerical simulations. Table 1
presents a possible selection of parameter values because there is currently
no available data pertaining to our suggested model. Table 1 shows model
2.1 numerical simulations with different parameters.

Table 1: Parameter Value

Parameter Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5 Simulation 6

r 0.5 0.2 0.5 1 0.4 1.5

K 0.05 1 0.05 2 2 1.5

α1 0.3 0.5 0.3 1 0.3 0.5

e 0.8 0.2 0.2 0.2 0.1 0.5

c 0.5 0.5 0.5 0.5 1 0.5

α2 1 0.2 1 1 1 0.2

δ 0.2 0.1 0.2 0.3 0.1 0.1

d1 0.5 0.2 0.5 0.5 0.5 0.3

d2 0.6 1 1 0.6 0.6 1

β 0.1 0.2 0.2 0.1 0.1 0.3

q 0.5 0.5 0.5 0.5 0.5 1

γ 0.5 0.5 0.5 0.5 0.5 1

µ 0.8 0.3 0.8 0.2 0.2 1

h 0.6 0.1 0.6 0.6 0.6 0.5

Simulation E0 was carried out by choosing the parameters in Table 1
simulation 1, with stability conditions r = 0.5 < e = 0.8 and γ = 0.5 <
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µ+ h = 1.4. Furthermore, by using the parameters in Table 1 simulation 2,
E1 = [0, 0, 0.5] exists, because existence condition are met; i.e., γ − β − h =
0.2 < µ = 0.3 < γ − h = 0.4. By choosing an initial value N1 = [1, 0.6, 0.8],
N2 = [0.7, 0.6, 0.2], N3 = [0.8, 0.1, 0.2], N4 = [0.6, 0.4, 0.5], we get E1 is locally

asymptotically stable, with stability condition r = 0.2 < a1

(

(µ−γ−h)q
γ−µ−β−h

)

+e =

1.7. This result is consistent with the eigenvalues of the Jacobian matrix
showing that E1 is locally asymptotically stable.

Numerical simulation E2 was carried out by using the parameters in Table
1, simulation 3. E2 = (0.03, 0, 0) exists. The local stability condition fulfilled

in r = 0.5 > 2e = 0.4 and k = 0.05 < min
{

δr
c(r−e)

= 2.667, r(µ+h−γ)
d1(r−e)

= 3
}

.

This figure illustrates that disease prey and predator are on the verge of
extinction.

Numerical simulation in Figure 6 was carried out by using the parame-

ters in Table 1 simulation 5. E4 =
(

δ
c
, rkc−δ−ekc

c(ck+r)
, 0
)

exists and the stability

condition is fulfilled. Numerical simulation E5 was carried out by using the
parameters in Table 1 simulation 6. E5 = (0.3, 0.2, 0.1) exists. The local
stability condition is fulfilled.

5 Conclusion

We have developed a model that explains how three species interact: sus-
ceptible prey and harvesting, diseased prey and predator cannibalism and
harvesting. We demonstrate that every model solution is limited and non-
negative. The dynamical behavior of the model, particularly the behavior
of solutions around the equilibrium point, has been demonstrated. In this
model, there are six equilibria. All equilibria are conditionally stable and
locally asymptotically stable. Runge Kutta 4th order numerical simulations
provide the basis for all local stability. Additionally, by establishing Lya-
punov functions, we have demonstrated the global stability of the model of
specific equilibrium locations.
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