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Abstract

In this paper, we propose integral representations of the one-parameter
k-Pell and k-Pell-Lucas numbers. Our results are also deduced with
the Pell and Pell-Lucas numbers.

1 Introduction

Let P, be the Pell number defined by P, = 2P, 1 + P, 5 for n > 2 with
Py = 0and P, = 1, and let @, be the Pell-Lucas number defined by
Qn =20, 1+ Q,_s for n > 2 with @y = 2 and @)y = 2. In 2019, Trojnar-
Spenlina [1] introduced one-parameter generalizations of the Pell and Pell-
Lucas numbers by studying the recursive and defined them as follows:

Let k£ and n be non-negative integers with k& > 2. A one-parameter k-Pell
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number Py, is defined by Pr, = kPrn_1 + (k — 1)Pg 2 for n > 2 with
Pro = 0 and P = 1, and a one-parameter k-Pell-Lucas number Qy , is
defined by Qi, = kQkn-1 + (kK — 1)Qpno for n > 2 with Qry = 2 and
Q1 = 2. For k = 2, the classical Pell and Pell-Lucas numbers are obtained.
Binet’s formulas for Py, and 9y, are

Phon = Aik(a;; _a ;;)n) (1.1)
and AN k-2 (1 k)"
Q= (1~ A Joi+ (14 A ) or (12)

where Ay := Vk? + 4k — 4 and oy, := 5 (k + Ay), see [1, Corollary 2.3].

In 2024, Nilsrakoo [2] presented simple integral representations for P,
and @, by using a technique in [3]. In this paper, we propose new integral
representations of the one-parameter k-Pell and k-Pell-Lucas numbers.

2 Main results

First, we give some identities by using Binet’s formulas (1.1) and (1.2).
Lemma 2.1. Let k and n be non-negative integers with k > 2. Then
(i) Qrn+ (k=24 Ag) Prn =20}
(ii) Qrnt (k=2 = Ay) Pry = 20505
(iii) (Qun + (k= 2)Ppn)” — AZP2 = 4(1 — k)"
Lemma 2.2. Let k, m and n be non-negative integers with k > 2. Then
(1) 2Pk msn = PrmQkn + Prn Qo + 2(k — 2)PrnProns
(1) 2Qk min = Qb Qb + 8(k — 1) PrnPron-

Now, we obtain a new integral representation for Py s, can be found by
employing other known relations between the two numbers Py, and Qj 4.

Theorem 2.3. Let k, { and n be non-negative integers with k > 2. Then

Prn = 5 / (Ope+ (k—2+2)Pry)" du. (2.3)
QnAk _Ak
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Proof. A simple integration leads to

Ag
/ (ij—i— (k—2+ux) ,ij)n—l dr = L [(kag +(k—2+12) 'P]M)n ] fk

—Ayp n Pk,e Ay

1 1
= k—2+ A " —
Prs [(Qr.o+ ( + Ay) Pro)"] WPrs

[(Qre + (B —2— Ag) Pry)"].

From (i) and (ii) of Lemma 2.1 with n replaced with ¢, it follows that

/_Ak (Qre+ (k—2+2)Ppy)" Hde = ! [(20,‘;)" — (2(1 _Zk)g)n}

Ag nPW O
2°Ap [ 1 (. (Q—=Fk)™
= A\
n’Pk,g Ak Oy,
_ 2"Ap Prn
N n'Pk,g ’
Then (2.3) follows. This completes the proof. O

Remark 2.4. As in Theorem 2.3, equation (2.3) is equivalent to

NP ! n—1
Pron = 2n7 / (Qre+ (E—2+ Apt)Pre)”  dt.
1

Indeed, substituting t = Aik produces dv = Agdt and the limits of integration
are changed to —1 and 1, respectively.

Since Py, = P, we get the following corollary.

Corollary 2.5 ([2], Theorem 3.1). Let ¢ and n be non-negative integers.
Then

V8 1
) _1 nkPy -1
Py = Qe+ Pra)"'de = —= | (Qu+ VBP,t)""dt.
278 J_3 2r 4
Finally, we provide the integral representations for Q ¢, based on the two
numbers Py, and Oy 4.

Theorem 2.6. Let k, ¢ and n be non-negative integers with k > 2. Then
Qp.on 15 equal to

1 Ak
Q"Ak/ (Qut(k— 24 2 — n(k—2 — 2))Pie)(Qust (k= 2+ 2)Pro)" da.
—A,



472 A. Nilsrakoo, W. Nilsrakoo

Proof. Replacing n by n+ 1 in (2.3), we get

Ay
(n+ 1)Pre / (Que+ (k—2+2)Pry)"de.  (24)

] kdn4-€ —
) 1
2n+ Ak —A,

Using the integration by parts with (2.4), Lemmas 2.1 and 2.2, we obtain

1A .
I = Q"AJ (Ot (n+1) (k=24 2) Pry) (Qpe + (k—2+2) Pry)" ' do
~A,

1
N n2n Ay Pkl
1
B RQ"Ak 'Pk,g
2Pk pn+e
B NPy
_ 1
N RQ"Ak ,Pkl

[(Qre+ (k=24 Ak) Pro)" (Qre+ (n+1) (E—2+ Ap) Pry)]

[(Qk,z + (]f —2— Ak) ij)n (ij + (n + 1) (/{J —2— Ak) 'Pk,z)]

(207" (Que + (n+ 1) (k = 2+ Ay) Pry)]

1 (1—k)™ 2P it
— 2" Nk—-2—-A — ’
n2" Ay Prs [ Uf;n (Qre+ (n+1)( k) Pre) P

i O_En - (1 B k)én
Ak K O'f;n

1— k)™ 2P in
(O_]l;n_'_( O_gn) )(n_'_1> Pk,f_ kn+¢

1
B nPM

[Qk,g + (n + 1) (/{: — 2) 'Pk,z]

k npk,f

1
= Prn [Qre + (n 4 1) (B —2) Py
nPM

1 2P tn+e
n k—2 . 1 — ’
"Prs (Qren + ( )Pren) (n+ 1) Pry " Pr

= Qk.on + 2 (k —2) Prin.

+

Then Qg = I — 2 (k — 2) Prn. Applying Theorem 2.3, the proof is com-
plete. O

Remark 2.7. Setting k = 2 in Theorem 2.6, we obtain [2, Theorem 3.4].
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