Integral Aspects of the Generalized Pell and Pell-Lucas Numbers

Achariya Nilsrakoo¹, Weerayuth Nilsrakoo²

¹Department of Mathematics Faculty of Science Ubon Ratchathani Rajabhat University Ubon Ratchathani 34000, Thailand

²Department of Mathematics Faculty of Science Ubon Ratchathani University Ubon Ratchathani 34190, Thailand

email: achariya.n@ubru.ac.th, weerayuth.ni@ubu.ac.th

(Received December 5, 2024, Accepted January 5, 2025, Published January 6, 2025)

Abstract

In this paper, we propose integral representations of the one-parameter k-Pell and k-Pell-Lucas numbers. Our results are also deduced with the Pell and Pell-Lucas numbers.

1 Introduction

Let P_n be the *Pell number* defined by $P_n = 2P_{n-1} + P_{n-2}$ for $n \geq 2$ with $P_0 = 0$ and $P_1 = 1$, and let Q_n be the *Pell-Lucas number* defined by $Q_n = 2Q_{n-1} + Q_{n-2}$ for $n \geq 2$ with $Q_0 = 2$ and $Q_1 = 2$. In 2019, Trojnar-Spenlina [1] introduced one-parameter generalizations of the Pell and Pell-Lucas numbers by studying the recursive and defined them as follows: Let k and n be non-negative integers with $k \geq 2$. A one-parameter k-Pell

Key words and phrases: One-parameter k-Pell number, one-parameter k-Pell-Lucas number, integral representation.

AMS (MOS) Subject Classifications: 11B39, 11B37.

The corresponding author is Weerayuth Nilsrakoo.

ISSN 1814-0432, 2025, https://future-in-tech.net

number $\mathcal{P}_{k,n}$ is defined by $\mathcal{P}_{k,n} = k\mathcal{P}_{k,n-1} + (k-1)\mathcal{P}_{k,n-2}$ for $n \geq 2$ with $\mathcal{P}_{k,0} = 0$ and $\mathcal{P}_{k,1} = 1$, and a one-parameter k-Pell-Lucas number $\mathcal{Q}_{k,n}$ is defined by $\mathcal{Q}_{k,n} = k\mathcal{Q}_{k,n-1} + (k-1)\mathcal{Q}_{k,n-2}$ for $n \geq 2$ with $\mathcal{Q}_{k,0} = 2$ and $\mathcal{Q}_{k,1} = 2$. For k = 2, the classical Pell and Pell-Lucas numbers are obtained. Binet's formulas for $\mathcal{P}_{k,n}$ and $\mathcal{Q}_{k,n}$ are

$$\mathcal{P}_{k,n} = \frac{1}{\Delta_k} \left(\sigma_k^n - \frac{(1-k)^n}{\sigma_k^n} \right) \tag{1.1}$$

and

$$Q_{k,n} = \left(1 - \frac{k-2}{\Delta_k}\right)\sigma_k^n + \left(1 + \frac{k-2}{\Delta_k}\right)\frac{(1-k)^n}{\sigma_k^n},\tag{1.2}$$

where $\Delta_k := \sqrt{k^2 + 4k - 4}$ and $\sigma_k := \frac{1}{2}(k + \Delta_k)$, see [1, Corollary 2.3].

In 2024, Nilsrakoo [2] presented simple integral representations for P_n and Q_n by using a technique in [3]. In this paper, we propose new integral representations of the one-parameter k-Pell and k-Pell-Lucas numbers.

2 Main results

First, we give some identities by using Binet's formulas (1.1) and (1.2).

Lemma 2.1. Let k and n be non-negative integers with $k \geq 2$. Then

(i)
$$Q_{k,n} + (k - 2 + \Delta_k) \mathcal{P}_{k,n} = 2\sigma_k^n$$
;

(ii)
$$Q_{k,n} + (k-2-\Delta_k) \mathcal{P}_{k,n} = 2\frac{(1-k)^n}{\sigma_k^n};$$

(iii)
$$(Q_{k,n} + (k-2)\mathcal{P}_{k,n})^2 - \Delta_k^2 \mathcal{P}_{k,n}^2 = 4(1-k)^n$$
.

Lemma 2.2. Let k, m and n be non-negative integers with $k \geq 2$. Then

(i)
$$2\mathcal{P}_{k,m+n} = \mathcal{P}_{k,m}\mathcal{Q}_{k,n} + \mathcal{P}_{k,n}\mathcal{Q}_{k,m} + 2(k-2)\mathcal{P}_{k,m}\mathcal{P}_{k,n};$$

(ii)
$$2\mathcal{Q}_{k,m+n} = \mathcal{Q}_{k,m}\mathcal{Q}_{k,n} + 8(k-1)\mathcal{P}_{k,m}\mathcal{P}_{k,n}$$
.

Now, we obtain a new integral representation for $\mathcal{P}_{k,\ell n}$ can be found by employing other known relations between the two numbers $\mathcal{P}_{k,\ell}$ and $\mathcal{Q}_{k,\ell}$.

Theorem 2.3. Let k, ℓ and n be non-negative integers with $k \geq 2$. Then

$$\mathcal{P}_{k,\ell n} = \frac{n\mathcal{P}_{k,\ell}}{2^n \Delta_k} \int_{-\Delta_k}^{\Delta_k} \left(\mathcal{Q}_{k,\ell} + (k-2+x) \, \mathcal{P}_{k,\ell} \right)^{n-1} dx. \tag{2.3}$$

Proof. A simple integration leads to

$$\int_{-\Delta_{k}}^{\Delta_{k}} (\mathcal{Q}_{k,\ell} + (k-2+x)\mathcal{P}_{k,\ell})^{n-1} dx = \frac{1}{n\mathcal{P}_{k,\ell}} \left[(\mathcal{Q}_{k,\ell} + (k-2+x)\mathcal{P}_{k,\ell})^{n} \right]_{-\Delta_{k}}^{\Delta_{k}}$$

$$= \frac{1}{n\mathcal{P}_{k,\ell}} \left[(\mathcal{Q}_{k,\ell} + (k-2+\Delta_{k})\mathcal{P}_{k,\ell})^{n} \right] - \frac{1}{n\mathcal{P}_{k,\ell}} \left[(\mathcal{Q}_{k,\ell} + (k-2-\Delta_{k})\mathcal{P}_{k,\ell})^{n} \right].$$

From (i) and (ii) of Lemma 2.1 with n replaced with ℓ , it follows that

$$\int_{-\Delta_k}^{\Delta_k} \left(\mathcal{Q}_{k,\ell} + (k - 2 + x) \, \mathcal{P}_{k,\ell} \right)^{n-1} dx = \frac{1}{n \mathcal{P}_{k,\ell}} \left[\left(2\sigma_k^{\ell} \right)^n - \left(2\frac{(1 - k)^{\ell}}{\sigma_k^{\ell}} \right)^n \right]$$
$$= \frac{2^n \Delta_k}{n \mathcal{P}_{k,\ell}} \left[\frac{1}{\Delta_k} \left(\sigma_k^{\ell n} - \frac{(1 - k)^{\ell n}}{\sigma_k^{\ell n}} \right) \right]$$
$$= \frac{2^n \Delta_k}{n \mathcal{P}_{k,\ell}}.$$

Then (2.3) follows. This completes the proof.

Remark 2.4. As in Theorem 2.3, equation (2.3) is equivalent to

$$\mathcal{P}_{k,\ell n} = \frac{n\mathcal{P}_{k,\ell}}{2^n} \int_{-1}^{1} (\mathcal{Q}_{k,\ell} + (k-2 + \Delta_k t) \mathcal{P}_{k,\ell})^{n-1} dt.$$

Indeed, substituting $t = \frac{x}{\Delta_k}$ produces $dx = \Delta_k dt$ and the limits of integration are changed to -1 and 1, respectively.

Since $\mathcal{P}_{2,n} = P_n$, we get the following corollary.

Corollary 2.5 ([2], Theorem 3.1). Let ℓ and n be non-negative integers. Then

$$P_{\ell n} = \frac{nP_{\ell}}{2^{n}\sqrt{8}} \int_{-\sqrt{8}}^{\sqrt{8}} (Q_{\ell} + P_{\ell} x)^{n-1} dx = \frac{nP_{\ell}}{2^{n}} \int_{-1}^{1} (Q_{\ell} + \sqrt{8} P_{\ell} t)^{n-1} dt.$$

Finally, we provide the integral representations for $Q_{k,\ell n}$ based on the two numbers $\mathcal{P}_{k,\ell}$ and $Q_{k,\ell}$.

Theorem 2.6. Let k, ℓ and n be non-negative integers with $k \geq 2$. Then $Q_{k,\ell n}$ is equal to

$$\frac{1}{2^n \Delta_k} \int_{-\Delta_k}^{\Delta_k} (\mathcal{Q}_{k,\ell} + (k-2+x-n(k-2-x))\mathcal{P}_{k,\ell}) (\mathcal{Q}_{k,\ell} + (k-2+x)\mathcal{P}_{k,\ell})^{n-1} dx.$$

Proof. Replacing n by n+1 in (2.3), we get

$$\mathcal{P}_{k,\ell n+\ell} = \frac{(n+1)\mathcal{P}_{k,\ell}}{2^{n+1}\Delta_k} \int_{-\Delta_k}^{\Delta_k} (\mathcal{Q}_{k,\ell} + (k-2+x)\mathcal{P}_{k,\ell})^n dx.$$
 (2.4)

Using the integration by parts with (2.4), Lemmas 2.1 and 2.2, we obtain

$$\begin{split} I &= \frac{1}{2^{n} \Delta_{k}} \int_{-\Delta_{k}}^{\Delta_{k}} (\mathcal{Q}_{k,\ell} + (n+1) (k-2+x) \mathcal{P}_{k,\ell}) (\mathcal{Q}_{k,\ell} + (k-2+x) \mathcal{P}_{k,\ell})^{n-1} dx \\ &= \frac{1}{n2^{n} \Delta_{k} \mathcal{P}_{k,\ell}} \left[(\mathcal{Q}_{k,\ell} + (k-2+\Delta_{k}) \mathcal{P}_{k,\ell})^{n} (\mathcal{Q}_{k,\ell} + (n+1) (k-2+\Delta_{k}) \mathcal{P}_{k,\ell}) \right] \\ &- \frac{1}{n2^{n} \Delta_{k} \mathcal{P}_{k,\ell}} \left[(\mathcal{Q}_{k,\ell} + (k-2-\Delta_{k}) \mathcal{P}_{k,\ell})^{n} (\mathcal{Q}_{k,\ell} + (n+1) (k-2-\Delta_{k}) \mathcal{P}_{k,\ell}) \right] \\ &- \frac{2\mathcal{P}_{k,\ell n+\ell}}{n\mathcal{P}_{k,\ell}} \\ &= \frac{1}{n2^{n} \Delta_{k} \mathcal{P}_{k,\ell}} \left[2^{n} \frac{\sigma_{k}^{\ell n} (\mathcal{Q}_{k,\ell} + (n+1) (k-2+\Delta_{k}) \mathcal{P}_{k,\ell}) \right] \\ &- \frac{1}{n2^{n} \Delta_{k} \mathcal{P}_{k,\ell}} \left[2^{n} \frac{(1-k)^{\ell n}}{\sigma_{k}^{\ell n}} (\mathcal{Q}_{k,\ell} + (n+1) (k-2-\Delta_{k}) \mathcal{P}_{k,\ell}) \right] - \frac{2\mathcal{P}_{k,\ell n+\ell}}{n\mathcal{P}_{k,\ell}} \\ &= \frac{1}{n\mathcal{P}_{k,\ell}} \left[\frac{1}{\Delta_{k}} \left(\sigma_{k}^{\ell n} - \frac{(1-k)^{\ell n}}{\sigma_{k}^{\ell n}} \right) \right] \left[\mathcal{Q}_{k,\ell} + (n+1) (k-2) \mathcal{P}_{k,\ell} \right] \\ &+ \frac{1}{n\mathcal{P}_{k,\ell}} \left(\sigma_{k}^{\ell n} + \frac{(1-k)^{\ell n}}{\sigma_{k}^{\ell n}} \right) (n+1) \mathcal{P}_{k,\ell} - \frac{2\mathcal{P}_{k,\ell n+\ell}}{n\mathcal{P}_{k,\ell}} \\ &= \frac{1}{n\mathcal{P}_{k,\ell}} \mathcal{P}_{k,\ell n} \left[\mathcal{Q}_{k,\ell} + (n+1) (k-2) \mathcal{P}_{k,\ell} \right] \\ &+ \frac{1}{n\mathcal{P}_{k,\ell}} \left(\mathcal{Q}_{k,\ell n} + (k-2)\mathcal{P}_{k,\ell n} \right) (n+1) \mathcal{P}_{k,\ell} - \frac{2\mathcal{P}_{k,\ell n+\ell}}{n\mathcal{P}_{k,\ell}} \\ &= \mathcal{Q}_{k,\ell n} + 2 (k-2) \mathcal{P}_{k,\ell n}. \end{split}$$

Then $Q_{k,\ell n} = I - 2(k-2)\mathcal{P}_{k,\ell n}$. Applying Theorem 2.3, the proof is complete.

Remark 2.7. Setting k = 2 in Theorem 2.6, we obtain [2, Theorem 3.4].

References

- [1] L. Trojnar-Spelina, I. Włoch, On generalized Pell and Pell-Lucas numbers, Iranian J. Sci. Tech. Transactions A: Sci., **43**, no. 1, (2019), 2871–2877.
- [2] A. Nilsrakoo, Integral representations of the Pell and Pell-Lucas numbers, Journal of Science and Science Education, 7, no.2, (2024), 272–281.
- [3] S. M. Stewart, Simple integral representations for the Fibonacci and Lucas numbers, Aust. J. Math. Anal. Appl, 19, no. 2, (2022), 1–5.