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Abstract

In this article, we discuss the G-Hamiltonian system which is a

generalization of the traditional Hamiltonian system in mechanics.

Moreover, we demonstrate that when given a G-Hamiltonian system

of differential equations, such as dx
dt

= Ax, the transformations that

have this form dy
dt

= BA−1By are also G-Hamiltonian. Furthermore,

we discuss the G-Lagrangian structure which is a generalization of the

traditional Lagrangian formulation in mechanics.

1 Introduction

In Mathematics, a Hamiltonian System is a system of differential equations
which can be written in the form of Hamilton’s equations. Hamiltonian Sys-
tems are usually formulated in terms of Hamiltonian vector fields on sym-
plectic manifolds or Poisson manifolds. Many problems in engineering and
physics lead to investigation of Hamiltonian systems of differential equa-
tions with periodic coefficients [4, 5]. As described in many books such as
[1, 4, 5, 6, 7], a classical Hamiltonian system is typically represented by the
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following set of differential equations:

dx

dt
= JδH(x),

where x represents the state vector of the system (e.g., position and mo-
mentum), H(x) is the Hamiltonian, a scalar function representing the total
energy of the system which is typically the sum of the kinetic and potential
energies, and J is a symplectic matrix, usually a block matrix of the form

J =

(

0 −Ik
Ik 0

)

. (1.1)

The G-Hamiltonian system is a generalization of the traditional Hamilto-
nian system. A traditional Hamiltonian system is described by differential
equations of the form:

dx

dt
= Ax,

where x is a vector of state variables and A is a matrix representing the
system’s dynamics. In this generalization, the system is modified or ”trans-
formed” by introducing a matrix B and considering the structure of the
system in a generalized Hamiltonian framework. The transformation leads
to a new system:

dy

dt
= BAB−1y.

The system remains Hamiltonian, as suggested by the term ”G-Hamiltonian”
meaning that even after the transformation, the system retains certain key
properties characteristic of Hamiltonian dynamics such as conserved quanti-
ties or symplectic structure [2]. The paper is organized as follows: In Section
2, we discuss some basic definitions and properties of the G-Hamiltonian sys-
tem. In Section 3, we introduce the main result. In Section 4, we discuss the
structure of the G-Lagrangian solutions.

2 Basic Definition and properties of

G-Hamiltonian Systems

A natural way of studying Hamiltonian Systems is to linearize them about
their periodic solutions and changing system coordinates to obtain new sys-
tems which are called G-Hamiltonian Systems. A G-Hamiltonian System
was introduced in 1975 as a generalization of the well-known Hamiltonian
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system [3]. We are interested in studying the G-Hamiltonian System which
has the form

ẋ = GA(t)x, (2.2)

where the matrix G is anti-symmetric and the matrix A is Hermitian (i.e.,
GT = −G,A∗ = A). We can easily see that a G-Hamiltonian matrix function
M(t) = GA(t) is the coefficient matrix of a Hamiltonian equation in matrix
notation ẋ = M(t)x. From now on, we consider the following definition:

Definition 2.1. A matrix A ∈ Cn×n is called G-Hamiltonian (or G-anti-
Hermitian) if it satisfies the relation AG = −A.

Each G-Hamiltonian A has the representation A = i−1GH with some
H = H∗. For a G-Unitary matrix, we have AG = G−1A∗G, the set of all
multipliers of A is symmetric with respect to the unit circle; i.e., together
with any its eigenvalue ρ the matrix A has the eigenvalue 1/ρ̄. Similarly,
if A is a G-Hamiltonian matrix, then A = −G−1A∗G, and the set of all
multipliers of A is symmetric with respect to the imaginary axis; i.e., if λ is
an eigenvalue of A, then −λ̄ is an eigenvalue of A too.

Remark 2.2. Under the transformation x = By, system (1) becomes ẏ =
JB−1ABy. When x1 = By1, x2 = By2, the form (Gx1, x2) becomes (GBy1, By2) =
(B∗GBy1, y2) and the new form for G will denoted by G′ = B∗GB.

3 The Main Result
Theorem 3.1. If the system ẋ = Ax is G-Hamiltonian, then, under the
transformation x = By, the new system ẏ = B−1ABy is also a G-Hamiltonian
system.

Proof. Since the new G form is given by G′ = B∗GB, by assumption we have
AG = −A, where AG is given in section (2). Let M = B−1AB. The goal is
to prove that MG′

= −M .

MG′

= G′
−1

M∗G′

= (B∗GB)−1(B−1AB)∗(B∗GB)

= B−1G−1(B∗)−1B∗A∗(B∗)−1B∗GB

= B−1G−1A∗GB

= B−1AGB, (AG = G−1A∗G = −A)

= −B−1AB

= −M.
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Theorem 3.2. The system ẋ = GA(t)x is G-Hamiltonian under the follow-
ing conditions:
1) The matrix A is Hermitian (i.e., A∗ = A)
2) The matrix G is non-singular and anti-Hermitian matrix (i.e., detG 6= 0,
G∗ = −G).

Proof. Let M = GA(t). Set G′ = A∗GA. To prove the system is G-
Hamiltonian, we must show that MG′

= −M , where MG′

= G′
−1

M∗G′,

MG′

= (GA)G
′

= G′−1
(GA)∗G′

= (A∗GA)−1(GA)∗A∗GA

= A−1G−1(A∗)−1A∗G∗A∗GA

= A−1G−1G∗A∗GA

= −GA, (A∗ = A,G∗ = −G)

= −M.

4 Structure of the G-Lagrangian Solutions

Definition 4.1. For two smooth vector functions X1, X2 : I → R2n, we
define the Poisson bracket of X1, X2 to be {X1, X2}(t) = XT

1
(t)GX2(t).

Definition 4.2. X1, X2 are said to be G-involution if {X1, X2} ≡ 0

Definition 4.3. A set of n linearly independent functions X1, .....Xn which
are pairwise G-involution functions are said to be a G-Lagrangian set.

We now state and prove the following theorem:

Theorem 4.4. If a G-Lagrangian set of solutions of the equation ẋ = GA(t)x
is given, then a complete set of 2n linearly independent solutions can be found
by integration.

Proof. We have ẋ = GA(t)x, where A(t) is symmetric, G is anti-Symmetric
and non-singular matrix. LetR(t) be the 2n×nmatrix whose columns are the
n-linearly independent solutions. If R(t) is a G-Lagrangian solutions, then
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we can construct the full fundamental matrix solution, since the columns are
solutions so that Ṙ = GAR and they are G-involution (i.e., RTGR = 0). As
a special case assume that G2 = −CI, where C means constant. We define
a 2n× n matrix by D2n×n = GR(RTR)−1. Then

DTGD = 0, RTGD = −CI, (C = Constant).

If K = (D,R), then K must satisfy the following condition: KTGK = CJ ,
and hence

K−1 =
1

C
J−1KTG =

(

0 − 1

C
1

C
0

)(

DTG
RTG

)

=
1

C

(

−RTG
DTG

)

.

Now, change coordinates by x = Kζ so that ẋ = K̇ζ +Kζ̇,

ζ̇ = K−1(GAK − K̇)ζ

=
1

C

(

−RTG
DTG

)

(GAD − Ḋ, GAR− Ṙ)ζ

=
1

C

(

−RTG2AD +RTGḊ −RTG2AR +RTGṘ

DTG2AD −DTGḊ DTG2AR−DTGṘ

)

ζ

=
1

C

(

0 0

DTG2AD −DTGḊ 0

)

ζ

Due to the fact that Ṙ = GAR, the second column in the above matrix is
zero. The one in the upper left-hand corner is also zero, which can be easily
seen by differentiating the fact that RTGD = −CI. Therefore, v̇1 = 0, and
v̇2 =

DT

C
(G2AD −GḊ)v1,

ζ =

(

v1
v2

)

,

which has a general solution

v1 = v10,

v2 = v20 + Lv10,

where

L =
1

C

∫ t

t0

DT (G2AD +GḊ)dt.

Therefore, a symplectic fundamental matrix solution is

X = (D +RL,R).

As a result, the complete set of solutions is obtained by integration.
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5 Conclusion

The generalization of the Hamiltonian system to the G-Hamiltonian system
provides a more flexible and robust framework for studying dynamical sys-
tems. By extending the classical Hamiltonian mechanics, the G-Hamiltonian
system introduces transformations that preserve the core properties of the
original Hamiltonian. In this paper, we showed that, given systems of G-
Hamiltonian equations, the transformations are also G-Hamiltonian provided
that the matrix inverse exists.
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