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Abstract

Bernstein Polynomials were one of the first mathematical polyno-

mials that were used for approximation. Moreover, Neural networks

were used for almost applicable targets. In this paper, we introduce

the Bernstein neural network as a mathematical operator that com-

bines the concepts of neural networks and Bernstein polynomials. It

is used to approximate measurable functions by representing them as

a weighted sum of Bernstein polynomials. Moreover, a special activa-

tion function that is derived from Bernstein Polynomials is defined and

used to approximate functions. Furthermore, we estimate the degree

of approximation with equivalent bounds to modulus of smoothness.

Finally, we estimate the degree of approximation using comparable

limitations to the modulus of smoothness.
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1 Introduction

Neural networks have an important benefit in approximation theory, as func-
tions can be approximated using neural networks [1, 2]. Many authors have
presented different models of neural networks with different activation func-
tions. Coscarelli and Spigler [3] have also constructed artificial (NNs) and
examined the behavior of his neural network in terms of Bernstein polyno-
mials. New neural networks using multivariate square Bernstein polynomials
with a positive integer coefficient were introduced by the authors in [4]. In
[5], Bernstein neural networks (BNNs) were defined as a type of neural net-
work architecture that utilizes Bernstein polynomials. The parameters of
NNs are activation functions. These networks are specifically designed for
function approximation tasks. Continuous functions were approximated by
those BNNs based on modulus of continuity. For every given weight w, and
input x such that x,w ∈ [−1, 1]d, the neural network is defined as

BNn (x) =

d
∑

j=0

n
∑
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cjσj (xjwj + bj) , (1.1)
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. Later,

in a similar way to Nn (x),the authors in [6] applied Bernstein polynomials
to train NNs and get better accuracy compared to ReLU networks. Let
Ld
p(I), I = [−1, 1], 0 < p < 1, be the space of measurable functions equipped

with the norm ‖f‖p = (
∫
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p . The k−th symmetric difference of f
along direction h is given by
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In terms of ∆k
h(f(x)), define the k−th modulus of smoothness of f by

Λk(f, t)p = sup
0<‖h‖≤t

‖∆k
h(f(x))‖p. (1.2)

2 Auxiliary Results

In this section, we present some useful lemmas for our work. From [6], we
obtain the similar lemma below:
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Lemma 2.1. Let f ∈ Ld
p(I), and n ∈ N. Then

‖BNn(f)‖p ≤ ‖BNn(f)− f‖p. (2.3)

The following lemma gives the property of boundness for the BNN.

Lemma 2.2. For any f ∈ Ld
p (I) and n ∈ N, there exists a constant M that

satisfies
‖BNn(f)‖p ≤ M‖f‖p. (2.4)

3 Main Results

In this section, we prove the existence of best approximation, and then study
the bounds of the degree of approximation that is equivalent to modulus of
smoothness

Theorem 3.1. Let f ∈ Ld
p(I), then, for n ∈ N and d ≤ n, there exist a BNN

of the form (1.1) that satisfies En(f)p ≤ c(p)Λk(f, δ)p.

Proof. By (1.1), (1.2) and the quasi triangle inequality
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≤ cΛk(f, δ)p.

Now, we study the lower bound of the degree of best approximation.

Theorem 3.2. Let f ∈ Ld
p(I) and n ∈ N. Then Λk(f, δ)p ≤ c(p)‖Nn(f) −

f‖p.

Proof. By using (2.3), (2.4) and Theorem 3.1, we have

Λk(f, δ)p ≤ Λk(f − BNn(f), δ)p + Λk(BNn(f), δ)p

≤ c (p) (‖f − BNn(f)‖p + ‖BNn(f)‖p) ,

≤ c (p) ‖BNn(f)− f‖p.
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4 Conclusions

Bernstein polynomials still play an active role in both theoretical and practi-
cal approaches such as neural networks. In this paper, we dealt with an op-
erator depending on neural networks and Bernstein polynomials. We defined
a mathematical formula of BNNs. We studied some mathematical proper-
ties of our operator, especially boundness. Moreover, we used the modulus
of smoothness to estimate the degree of approximation with the following
bounds: Direct theorem (Theorem 3.1) was proved to get the upper bound
of the degree of approximation with modulus of smoothness. It approaches
zero as fast as the smoothness of the function itself. Inverse theorem (Theo-
rem 3.2) was proved to get the lower bound of the degree of approximation
with the same modulus above.
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