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Abstract

In this paper, we propose a new double integral transform operator,

called the Laplace-General transform. Moreover, we establish several

basic properties and fundamental theorems of the Laplace-General

transform. Furthermore, we apply The theoretical results to a class

of partial integro-differential equations as an illustrative example.

1 Introduction

The Laplace transform has been extensively studied for decades as a power-
ful tool for solving various types of differential equations. Variations of the
Laplace transformation, such as the double Laplace transform, have been
developed to address problems involving two independent variables [1, 2].
Recently, the Laplace-Sumudu transform (LST) has also gained attention
for its unique properties and applications [3]. In line with these advance-
ments, it is reasonable to explore the combination of the Laplace transform
with other integral transforms. In this work, we demonstrate how to solve
the integral differential equations by combining the Laplace and the general
integral transforms.
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2 A new double integral transform

In this section, we give the basic concepts of the Laplace-General transform
(LGT) adopted in the paper are given.

Definition 2.1. The Lapace transform of the continuous function f(x) is
defined by:

L[f(x)] = F(α) =

∫

∞

0

e−αxf(x)dx. (2.1)

Definition 2.2. The general integral transform [4] of the continuous func-
tion f(t) is

T [f(t)] = F(β) = p(β)

∫

∞

0

e−q(β)tf(t)dt. (2.2)

Clearly, if p(β) = 1 and q(β) = α, then this general transform (2.2) gives the
Laplace transform (2.1).

Definition 2.3. The Laplace-General transform (LGT) of the function f(x, t)
of two variables x > 0 and t > 0 is defined by

LxTt[f(x, t)] = F(α, β) = p(β)

∫

∞

0

∫

∞

0

e−αx−q(β)tf(x, t)dtdx. (2.3)

Clearly, the LGT is a linear transformation. and covers most or even
all type of double integral transforms in the family of Laplace transform for
different value of p(s) and q(s) such as Laplace-Laplace [5], Laplace-Sumudu
[3] transforms.

Definition 2.4. A function f(x, t) is said to be of exponential order c and
d if there exists a positive constant K, X > 0, and T > 0 such that ∀x > X ,
∀t > T ,

|f(x, t)| ≤ Kecx+dt, (2.4)

or, equivalently,

lim
x→∞,t→∞

e−αx−q(β)t|f(x, t)| = K lim
x→∞,t→∞

e(−α−c)x−(q(β)−d)t,

= 0, α > c, q(β) > d. (2.5)

The function f(x, t) is called an exponential order as x→ ∞, t→ ∞ and
clearly, it does not grow faster than Kecx+dt as x→ ∞, t→ ∞.
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Theorem 2.5. Let a function f(x, t) be a continuous function in every finite
interval (0,X ) and (0, T ) of exponential order ecx+dt. Then the Laplace-
General transform of f(x, t) exists for all α and q(β) with Re(α) > c and
Re(q(β)) > d.

Proof. We have

|F(α, β)| =

∣

∣

∣

∣

p(β)

∫

∞

0

∫

∞

0

e−αx−q(β)tf(x, t)dtdx

∣

∣

∣

∣

≤ Kp(β)

∫

∞

0

∫

∞

0

e−αx−q(β)tecx+dtdtdx (2.6)

=
Kp2(β)

(α− c)(q(β)− d)
, Re(α) > c, Re(q(β)) > d.

It follows that

lim
x→∞,t→∞

|F(α, β)| = 0 or lim
x→∞,t→∞

F(α, β) = 0.

3 The LGT of some basic functions

By Definition (2.3), we obtain the following useful properties:

(1) LxTt[1] =
p(β)

αq(β)
.

(2) LxTt[x
ctd] = p(β)

Γ(c+ 1)

αc+1

Γ(d+ 1)

[q(β)]d+1
, Re(c) > −1, Re(d) > −1.

If c and d are positive integers, then LxTt[x
ctd] = p(β)

c!d!

αc+1[q(β)]d+1
.

(3) LxTt[e
cx+dt] =

p(β)

(α− c)(q(β)− d)
.

Similarly,

LxTt[e
i(cx+dt)] =

p(β)

(α− ci)(q(β)− di)
= p(β)

[

(αq(β)− cd) + i(cq(β) + dα)

(α2 + c2)(q2(β) + d2)

]

.

(4) LxTt[sin(cx+ dt)] = p(β)

[

(cq(β) + dα)

(α2 + c2)(q2(β) + d2)

]

.



82 D. Poltem, A. Wiwatwanich

(5) LxTt[cos(cx+ dt)] = p(β)

[

(αq(β)− cd)

(α2 + c2)(q2(β) + d2)

]

.

(6) LxTt[sinh(cx+ dt)] = p(β)

[

(cq(β) + dα)

(α2 − c2)(q2(β)− d2)

]

.

(7) LxTt[cosh(cx+ dt)] = p(β)

[

(αq(β)− cd)

(α2 − c2)(q2(β)− d2)

]

.

(8) LxTt[g(x)h(t)]) = Lx[g(x)]Tt[h(t)].

Theorem 3.1. Let F(α, β) = LxTt[f(x, t)], then

(i) LxTt

[

∂f(x, t)

∂x

]

= αF(α, β)− T [f(0, t)],

(ii) LxTt

[

∂f(x, t)

∂t

]

= q(β)F(α, β)− p(β)L[f(x, 0)],

(iii) LxTt

[

∂2f(x, t)

∂x2

]

= α2F(α, β)− αT [f(0, t)]− T [fx(0, t)],

(iv) LxTt

[

∂2f(x, t)

∂t2

]

= q2(β)F(α, β)− p2(β)L[f(x, 0)]− p(β)L[ft(x, 0)],

(v) LxTt

[

∂2f(x, t)

∂x∂t

]

= αq(β)F(α, β)− αp(β)L[f(x, 0)]− T [ft(0, t)].

Proof. (i)

LxTt

[

∂f(x, t)

∂x

]

= = p(β)

∫

∞

0

∫

∞

0

e−αx−q(β)t∂f(x, t)

∂x
dtdx,

= p(β)

∫

∞

0

e−q(β)t

(

α

∫

∞

0

e−αxf(x, t)dx− f(0, t)

)

dt,

= αF (α, β)− T [f(0, t)].

(ii)

LxTt

[

∂f(x, t)

∂t

]

= = p(β)

∫

∞

0

∫

∞

0

e−αx−q(β)t∂f(x, t)

∂t
dtdx,

= p(β)

∫

∞

0

e−αx

(

q(β)

∫

∞

0

e−q(β)tf(x, t)dt− f(x, 0)

)

dx,

= q(β)F (α, β)− p(β)L[f(x, 0)].

Similarly, we can prove the remaining properties.
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Theorem 3.2. If F(α, β) = LxTt[f(x, t)], then

LxTt[f(x− ξ, t− η)H(x− ξ, t− η)] = e−αξ−q(β)ηF(α, β). (3.7)

where H(x, t) is the Heaviside unit step function defined by H(x−ξ, t−η) = 1
when x > ξ and t > η : H(x− ξ, t− η) = 0 when x < ξ and t < η.

Proof. By Definition (2.3), we have

LxTt[f(x− ξ, t− η)H(x− ξ, t− η)]

= p(β)

∫

∞

0

∫

∞

0

e−αx−q(β)tf(x− ξ, t− η)H(x− ξ, t− η)dtdx,

= p(β)

∫

∞

ξ

∫

∞

η

e−αx−q(β)tf(x− ξ, t− η)dtdx.

Substituting x− ξ = τ and t− η = δ, we ger

= p(β)e−αξ−q(β)η

∫

∞

0

∫

∞

0

e−ατ−q(β)δf(τ, δ)dτdδ,

= e−αξ−q(β)ηF(α, β).

Definition 3.3. The convolution of two integrable functions f(x, t) and g(x, t),
denoted by (f ∗ ∗g)(x, t), is defined by

(f ∗ ∗g)(x, t) =

∫ x

0

∫ t

0

f(x− ξ, t− η)g(ξ, η)dξdη. (3.8)

Theorem 3.4. (Convolution Theorem)
Let LxTt[f(x, t)] = F(α, β) and LxTt[g(x, t)] = G(α, β) then

LxTt[(f ∗ ∗g)(x, t)] =
1

p(β)
F(α, β)G(α, β). (3.9)

Proof. By Definition (2.3), we have
LxTt[(f ∗ ∗g)(x, t)] = p(β)

∫

∞

0

∫

∞

0
e−αx−q(β)t(f ∗ ∗g)(x, t)dtdx,

= p(β)

∫

∞

0

∫

∞

0

e−αx−q(β)t

[
∫ x

0

∫ t

0

f(x− ξ, t− η)g(ξ, η)

]

dξdηdtdx.
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Using the Heaviside unit step function, we obtain

= p(β)

∫

∞

0

∫

∞

0

e−αx−q(β)t

[
∫

∞

0

∫

∞

0

f(x− ξ, t− η)H(x− ξ, t− η)g(ξ, η)

]

dξdηdtdx,

= p(β)

∫

∞

0

∫

∞

0

g(ξ, η)

[
∫

∞

0

∫

∞

0

e−αx−q(β)tf(x− ξ, t− η)H(x− ξ, t− η)

]

dtdxdξdη.

By Theorem (3.2), we have

=

∫

∞

0

∫

∞

0

g(ξ, η)e−αξ−q(β)ηF(α, β)dξdη,

= F(α, β)

∫

∞

0

∫

∞

0

g(ξ, η)e−αξ−q(β)ηdξdη,

=
1

p(β)
F(α, β)G(α, β).

4 An Application to Class of Integro-Differential

Equations

4.1 Voltera Integral Equation

Let us consider the Voltera integral equation in the form

φ(x, t) = g(x, t) + λ

∫ x

0

∫ t

0

φ(x− δ, t− ǫ)ψ(δ, ǫ)dδdǫ, (4.10)

where φ(x, t) is an unknown function, λ is a constant, and g(x, t) and ϕ(x, t)
are two known functions.
Applying the Laplace-General transform (LGT) to both sides of Eq. (4.10)
and using Theorem 3.4, we have

φ(α, β) =
p(β)g(α, β)

p(β)− λψ(α, β)
. (4.11)

Taking L−1
x T−1

t to Eq. (4.11), which yields the solution φ(x, t) of Eq. (4.10)

φ(x, t) = L−1
x T−1

t

[

p(β)g(α, β)

p(β)− λψ(α, β)

]

. (4.12)

We illustrate the above method by the following example.
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Example 4.1. Solve

φ(x, t) = a− λ

∫ x

0

∫ t

0

φ(δ, ǫ)dδdǫ, (4.13)

where a and λ are constants.

Applying the Laplace-General transform (LGT) to both sides of Eq.
(4.13) and simplifying, we get

φ(α, β) = a
p(β)

αq(β) + λ
. (4.14)

Therefore, we apply the inverse Laplace-General transform (LGT) to Eq.
(4.14), which yields the solution

φ(x, t) = aJ0(2
√

λxt).

4.2 Voltera Integro Partial-Differential Equations

Consider the Volterra integro-partial differential equation in the form

∂φ(x, t)

∂x
+
∂φ(x, t)

∂t
= g(x, t) + λ

∫ x

0

∫ t

0

φ(x− δ, t− ǫ)ψ(δ, ǫ)dδdǫ, (4.15)

with the conditions

φ(x, 0) = f0(x), φ(0, t) = h0(t). (4.16)

Applying LGT to both sides of Eq. (4.15) and single Laplace and single
general transforms to Eq. (4.16) and simplifying, we have

φ(α, β) = p(β)

(

g(α, β) + h0(β) + p(β)f0(α)

p(β)α + p(β)q(β)− λψ(α, β)

)

. (4.17)

Thus, we utilize the inverse LGT on Eq. (4.17), resulting in the solution

φ(x, t) = L−1
x T−1

t

[

p(β)

(

g(α, β) + h0(β) + p(β)f0(α)

p(β)α+ p(β)q(β)− λψ(α, β)

)]

. (4.18)

We provide an example of the above procedure below.
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Example 4.2. Solve

∂φ(x, t)

∂x
+
∂φ(x, t)

∂t
= −1+ ex+ et+ ex+t+

∫ x

0

∫ t

0

φ(x− δ, t− ǫ)dδdǫ (4.19)

with conditions

φ(x, 0) = ex = f0(x), φ(0, t) = et = h0(t).

Substituting

ψ(α, β) = =
p(β)

αq(β)
,

g(α, β) = −
p(β)

αq(β)
+

p(β)

(α− 1)q(β)
+

p(β)

α(q(β)− 1)
+

p(β)

(α− 1)(q(β)− 1)
,

f0(α) =
1

α− 1
,

h0(β) =
p(β)

q(β)− 1

,

in Eq. (4.18) and simplifying, we obtain the solution

φ(x, t) = L−1
x T−1

t

[

p(β)

(α− 1)(q(β)− 1)

]

= ex+t.

4.3 Partial Integro -Differential Equations

In this section, we apply the Laplace – General transform (LGT) method to
Partial Integro-Differential Equations.

∂2φ(x, t)

∂t2
−
∂2φ(x, t)

∂x2
+ φ(x, t) +

∫ x

0

∫ t

0

ψ(x− δ, t− ǫ)φ(δ, ǫ)dδdǫ = g(x, t),

(4.20)
with conditions

φ(x, 0) = f0(x),
∂φ(x, 0)

∂t
= f1(x), φ(0, t) = h0(t),

∂φ(0, t)

∂x
= h1(t). (4.21)

Taking LGT to both sides of Eq. (4.20) and single Laplace and single general
transforms to Eq. (4.21) and simplifying, we have

φ(α, β) = p(β)

(

g(α, β) + p(β)q(β)f0(α) + p(β)f1(α)− αh0(β)− h1(β)

p(β)q2(β)− p(β)α2 + p(β) + ψ(α, β)

)

.

(4.22)
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Apply the inverse LGT to Eq. (4.22) yields the solution

φ(x, t) = L−1
x T−1

t

[

p(β)

(

g(α, β) + p(β)q(β)f0(α) + p(β)f 1(α)− αh0(β)− h1(β)

p(β)q2(β)− p(β)α2 + p(β) + ψ(α, β)

)]

.

(4.23)
We illustrate the above method by an example.

Example 4.3. Solve

∂2φ(x, t)

∂t2
−
∂2φ(x, t)

∂x2
+ φ(x, t) +

∫ x

0

∫ t

0

ex−δ+t−ǫφ(δ, ǫ)dδdǫ = ex+t + xtex+t

(4.24)
with conditions

φ(x, 0) = ex,
∂φ(x, 0)

∂t
= ex, φ(0, t) = et,

∂φ(0, t)

∂x
= et

Substituting

ψ(α, β) =
p(β)

(α− 1)(q(β)− 1)
,

g(α, β) =
p(β)

(α− 1)(q(β)− 1)
+

p(β)

(α− 1)2(q(β)− 1)2
,

f0(α) =
1

α− 1
,

f1(α) =
1

α− 1
,

h0(β) =
p(β)

q(β)− 1
,

h1(β) =
p(β)

q(β)− 1
,

in Eq. (4.18) and simplifying, we obtain the solution

φ(x, t) = L−1
x T−1

t

[

p(β)

(α− 1)(q(β)− 1)

]

= ex+t.

5 Conclusion

The solution of a linear partial integro-differential equation was derived us-
ing the Laplace-General transform (LGT) approach. It is evident that this
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solution is consistent with the previous results obtained through the double
Laplace transform and the Laplace-Sumudu transformation.
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