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Abstract

The Multivariate Spatial Durbin Model (MSDM) is a significant
advance in spatial econometrics, very relevant in the context of re-
search problems. This model extends spatial analysis by capturing
the complexity and dynamism of interactions between variables in
a spatial context that is often ignored by classical spatial models.
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Furthermore, this article aims to estimate the parameters of MSDM
model applied to large and complex data sets through Monte Carlo
simulations. This model was then estimated using Maximum Likeli-
hood Estimation (MLE), and to test the accuracy of the model using
the Maximum Likelihood Ratio Test (MLRT) with a computational
approach. The research results show that the MSDM model para-
meter estimates are accurate as indicated by an accuracy value that
is smaller than the 5% significance level. The model becomes more
efficient as the sample size increases.

1 Introduction

The Spatial Durbin Model (SDM) has gained significant popularity among
researchers, particularly in univariate response studies. Numerous empirical
investigations utilizing SDM with univariate responses have been conducted
by ([1],[2], [3], [4], [5]). However, the increasing complexity of real-world pro-
blems and the need for more comprehensive modeling approaches have driven
the development of spatial regression models with multivariate responses [6].

This article meticulously develops the Multivariate Spatial Durbin Model
(MSDM) as an extension of the MSAR by incorporating endogenous and
exogenous spatial interactions between cross-sectional units. The model ex-
tends spatial analysis by capturing the complexity and dynamism of inter-
actions between variables in a spatial context that classical spatial models
often ignore. The MSDM model is estimated using Maximum Likelihood Es-
timation (MLE), and the accuracy of the model is rigorously tested using the
Maximum Likelihood Ratio Test (MLRT) with a computational approach.
This paper’s theoretical and computational findings are substantiated by a
comprehensive simulation study using Monte Carlo simulation. Simulation
results show high agreement with theoretical expectations, thus confirming
the validity and reliability of the research findings [7].

This MSDM model estimation is developed from the highly reliable MLE
algorithm. This MLE can be used as an alternative in spatial data analy-
sis, where MLE is effective in solving large data cases [8] and is reliable in
improving the estimation results of geostatistical models [9].
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2 Multivariate Spatial Durbin Model

Incorporating the methodological framework of the Multivariate Spatial Au-
toregressive (MSAR) model as delineated in [10] and integrating the spa-
tial dependencies among exogenous variables, we extend this foundation to
formulate the Multivariate Spatial Durbin Model (MSDM). This advanced
model is presented as follows:

Yh = ρhh WYh +

p
∑

h′ 6=h

ρh′h WYh′ +

q
∑

k=1

bkhXk +

q
∑

k=1

WXkθkj + εh (2.1)

Yh represents the h-th column vector of the dependent variable matrix Y

formed from N locations, with 1 ≤ h ≤ p, Xk denotes the matrix of inde-
pendent variables. The term WYh signifies the influence of other dependent
variables, with the corresponding parameter ρh′h referred to as the extra
activity effect, also known as the endogenous effect.

2.1 Parameter Estimation of MSDM

Equation (2.1) can be reformulated in matrix notation as follows:

Y = WYP + XB +WXΘ+ E (2.2)

where
Y = (Y1, Y2, . . . , Yp)
X = (X1, X2, . . . , Xq)
P = (ρh′h) ∈ Rp×p

B = (bkh) ∈ Rq×p

Θ = (θkj) ∈ Rq×p

E = (ε1, ε2, ..., εp) ∈ R
N×p

The MSDM model (2.2) can be reformulated as an MSAR model by defin-

ing the matrix Z =
[

I X WX
]T

and the vector B̃ =
[

B Θ
]

, thereby

simplifying equation (2.2) to: Y = (I ⊗ PW )Y + Z̃β + ε, where

ε = (I − I ⊗ PW )Y − Z̃β, (2.3)

with Y = vec (Y) =
(

Y
T
1 ,Y

T
2 , ...,Y

T
p

)T
∈ R

N×p

Z̃ = Ip ⊗ Z

ε ∼ N (0, σ2I)



226N. Atikah, B. Widodo, Mardlijah, S. Rahardjo, S. Harini, R. N. I. Dinnullah

Using the derivative of equation (2.3), the log-likelihood function is ob-
tained as follows.

ln (L (P, β, σ2|Y )) = −p

2
ln (2π)− p

2
ln (σ2) + ln |I − I ⊗ PW |

− 1
2σ2 (

(

(I − I ⊗ PW )Y − Z̃β
)T

− 1
2σ2

(

(I − I ⊗ PW )Y − Z̃β
)

(2.4)

2.1.1 Estimation of Parameter β on MSDM Model

The parameter β estimation can be achieved by maximizing the log-likelihood
function in equation (2.4). This involves differentiating equation (2.4) with

respect to β (∂ ln (L)
∂β

= 0). Consequently, the estimator for the parameter β
is given by:

β̂ =
(

Z̃TZ
)−1

Z̃T (I − I ⊗ PW )Y (2.5)

Proposition 2.1. If β represents the parameter matrix of the MSDM model,

then β̂ serves as the estimator parameter at the i-th location, which is defined

as follows:

β̂ =
(

Z̃T Z̃
)−1

Z̃T (I − I ⊗ PW )Y

Proof.

β̂ =











β̂0

β̂1
...

β̂q











=

















(

Z̃T Z̃
)−1

Z̃T (I − I ⊗ PW )Y1
(

Z̃T Z̃
)−1

Z̃T (I − I ⊗ PW )Y2

. . .
(

Z̃T Z̃
)−1

Z̃T (I − I ⊗ PW )Yq

















=
(

Z̃T Z̃
)−1

Z̃T (I − I ⊗ PW )Y(n×q)

Proposition 2.2. If β̂ represents the estimator parameter of the MSDM

model, then β̂ is an unbiased estimator for β.

Proof.
The unbiased nature of the β̂ estimator will be demonstrated by showing

that E
(

β̂
)

= β

E
(

β̂
)

= E

(

(

Z̃T Z̃
)−1

Z̃T (I − I ⊗ PW )Y

)

E
(

β̂
)

= E

(

(

Z̃T Z̃
)−1

Z̃T (I − I ⊗ PW ) (I − I ⊗ PW )−1
(

Z̃β + ǫ
)

)
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E
(

β̂
)

= E

(

(

Z̃T Z̃
)−1

Z̃T Z̃β

)

E
(

β̂
)

= β

Proposition 2.3. If β̂ is the estimator parameter of the MSDM model, then

β̂ constitutes an efficient estimator of β.

Proof.
The efficient property of the β̂ estimator can be demonstrated by showing
that the variance of the minimum β̂is minimized.

V ar
(

β̂
)

= E

(

(

β̂ −E
(

β̂
))(

β̂ −E
(

β̂
))T

)

=
(

ZT Z̃
)−1

σ̂2

Let β̂∗ be another linear estimator of β̂, then

β̂∗ =

(

(

Z̃T Z̃
)−1

Z̃T + c

)

(I − I ⊗ PW )Y

β̂∗ =

(

(

Z̃T Z̃
)−1

Z̃T + c

)

(

Z̃β + ǫ
)

β̂∗ = β +
(

Z̃T Z̃
)−1

ǫ+ cZ̃β + cǫ

where c is a constant matrix.
So E

(

β̂∗

)

= β + cZ̃β.

The estimator β̂∗ is assumed to be an unbiased estimator of β̂, so that

E
(

β̂∗

)

= β. Then we get that cZ̃β is a 0 matrix. So that,

β̂∗ − β =

(

(

Z̃T Z̃
)−1

Z̃T + c

)

ǫ

V ar
(

β̂∗

)

= E

(

(

β̂∗ − E
(

β̂∗

))(

β̂∗ − E
(

β̂∗

))T
)

V ar
(

β̂∗

)

=

(

(

Z̃T Z̃
)−1

Z̃T + c

)

E
(

ǫǫT
)

(

Z̃
(

Z̃T Z̃
)−1

+ cT
)

V ar
(

β̂∗

)

= σ̂2

(

(

Z̃T Z̃
)−1

Z̃T + c

)(

Z̃
(

Z̃T Z̃
)−1

+ cT
)

V ar
(

β̂∗

)

= σ̂2

(

(

Z̃T Z̃
)−1

+ ccT
)

V ar
(

β̂∗

)

= V ar
(

β̂
)

+ σ̂2ccT

So we get V ar
(

β̂∗

)

− V ar
(

β̂
)

= Hatσ2ccT .

Because ccT is a matrix whose elements are all non-negative and σ̂2 ≥ 0,



228N. Atikah, B. Widodo, Mardlijah, S. Rahardjo, S. Harini, R. N. I. Dinnullah

then σ̂2ccT ≥ 0. So that V ar
(

β̂
)

≤ V ar
(

β̂∗

)

. So, it can be concluded that

β̂ is efficient or has minimum variance.

2.1.2 Estimation of Parameter σ2 in MSDM Model

The estimation of σ2 is performed by maximizing the log-likelihood function
presented in Equation (2.4), which involves differentiating Equation (2.4)

with respect to σ2 (∂ ln (L)
∂σ2 = 0). Hence, the estimator parameter for σ2 is

derived as follows:

σ2 =
1

p
((I − I ⊗ PW )Y − Z̃β)T ((I − I ⊗ PW )Y − Z̃β) (2.6)

Proposition 2.4. If σ̂2 is the estimator parameter from the MSDM model,

then σ2 = SSE
n−2 tr(S)+tr(STS)

is an unbiased estimator for σ2.

Proof.
The unbiased property of the estimator σ̂2 will be demonstrated by showing
that E (σ̂)2 = σ2 where

S =
(

Z̃TZ
)−1

Z̃T (I − I ⊗ PW )

E (σ̂2) = E

(

1
p

(

(I − I ⊗ PW )Y − Z̃β
)T (

(I − I ⊗ PW )Y − Z̃β
)

)

E (σ̂2) = 1
p
E
(

ǫT ǫ
)

E (σ̂2) = 1
p
E(SSE)

E(SSE) = E
(

ǫT ǫ
)

E(SSE) = E
(

ǫT (I − S)T (I − S) ǫ
)

E(SSE) = E
(

tr
(

ǫT (I − S)T (I − S) ǫ
))

E(SSE) =
(

n− 2tr (S) + tr
(

STS
))

σ2

SSE =
(

n− 2tr (S) + tr
(

STS
))

σ2

σ2 = SSE
n−2 tr(S)+tr(STS)

So, it is proven that if σ̂2 is the estimator parameter of the MSDM model,
then σ2 = SSE

n−2 tr(S)+tr(STS)
is an unbiased estimator for σ2.

Corollary 2.5. If Σ̂ is an unbiased estimator for the variance-covariance

matrix Σ, then Σ̂ is also an unbiased estimator of the variance-covariance

matrix Σ.
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Proof.
It will be demonstrated that Σ̂ = Y T (I−S)T (I−S)Y

(

δ2
1

δ2

)

E(SSEh) =
(

n− 2tr (S) + tr
(

STS
))

σ2
h

E(SEhEh) =
(

n− 2tr (S) + tr
(

STS
))

σ2
hh

E (σ̂2
h) = σ̂2

h

E (σ̂2
hh) = σ̂2

hh

Σ̂ = Y T (I−S)T (I−S)Y
(

δ2
1

δ2

)

So, it is proven that If Σ̂ is an unbiased estimator for the variance-covariance
matrix Σ, then Σ̂ is also an unbiased estimator of the variance-covariance
matrix Σ.

2.1.3 Estimation of Parameter P in MSDM Model

Based on equation (2.5), the estimation of P is determined by maximizing
σ2 in equation (2.6) by differentiating equation (2.5) with respect to ρ0 and

ρ1 (
∂(σ2)
∂ρ0

= 0 and
∂(σ2)
∂ρ1

= 0). Thus, we obtain

ρ̂ = ρ0 = ρ1 =
(

ZTZ
)−1

ZTY (2.7)

Proposition 2.6. If P̂ is an estimator parameter from the MSDM model,

then ρ̂ =
(

ZTZ
)−1

ZTY is an unbiased estimator for P .

Proof.
The unbiased nature of the estimator P̂ will be demonstrated by showing

that E
(

P̂
)

= P .

E
(

P̂
)

= E
(

(

ZTZ
)−1

ZTY
)

E
(

P̂
)

= E
(

(

ZTZ
)−1

ZT (I − (I ⊗ PW ))−1 (Zβ + ǫ)
)

E
(

P̂
)

= E(P )

E
(

P̂
)

= P

It is proven that If P̂ is an estimator parameter from the MSDM model, then

ρ̂ =
(

ZTZ
)−1

ZTY is an unbiased estimator for P .
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Table 1: Estimation of the slope coefficients.
Slope 8 cn

50 100 300 500
Mean St.Dev Mean St.Dev Mean St.Dev Mean St.Dev

ρ1 : 0.825 0.813 0.074 0.821 0.065 0.151 0.066 0.821 0.068
ρ2 : 0.769 0.750 0.078 0.753 0.077 0.759 0.084 0.764 0.085
ρ3 : 0.444 0.432 0.132 0.443 0.158 0.434 0.155 0.440 0.157

β11 : −0.017 -0.022 0.016 -0.017 0.018 -0.016 0.018 -0.016 0.018
β12 : −0.065 -0.071 0.116 -0.056 0.110 -0.070 0.108 -0.064 0.113
β13 : −0.047 -0.047 0.097 -0.049 0.103 -0.049 0.113 -0.042 0.108
β21 : −0.150 -0.155 0.064 -0.154 0.070 -0.154 0.079 -0.151 0.073
β22 : −0.090 0.001 0.496 -0.084 0.449 -0.107 0.462 -0.070 0.485
β23 : 1.318 1.330 0.428 1.304 0.487 1.308 0.432 1.305 0.435
β31 : 0.039 0.058 0.081 0.043 0.084 0.039 0.089 0.037 0.090
β32 : −0.646 -0.517 0.542 -0.569 0.633 -0.684 0.553 -0.668 0.621
β33 : −0.953 -0.921 0.586 -0.950 0.575 -0.981 0.577 -0.959 0.529
θ11 : 0.0289 0.0360 0.033 0.032 0.036 0.031 0.035 0.028 0.039
θ12 : 0.060 0.059 0.225 0.062 0.195 0.074 0.199 0.050 0.195
θ13 : −0.519 -0.522 0.197 -0.546 0.250 -0.517 0.229 -0.511 0.234
θ21 : −0.082 -0.097 0.135 -0.092 0.155 -0.087 0.160 -0.084 0.154
θ22 : 0.034 0.096 1.064 0.006 0.864 0.091 0.831 0.011 0.821
θ23 : −0.397 -0.405 0.906 -0.538 1.018 -0.419 0.992 -0.315 0.975
θ31 : 0.068 0.092 0.176 0.083 0.210 0.077 0.210 0.067 0.192
θ32 : −1.226 -1.199 1.017 -1.246 1.102 -1.282 1.012 -1.201 1.122
θ33 : 0.039 0.249 1.218 0.165 1.338 0.034 1.294 0.038 1.280
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3 Results and Discussion

This section simulates the Multivariate Spatial Durbin Model (MSDM) esti-
mations using limited samples with sizes N = 50, 100, 300, 500 The param-
eters ρ, β, and θ are set according to the values in Table 1. The simulation
results indicate that the average parameter estimates increasingly converge
toward their true values as the sample size increases and the standard devi-
ation decreases. This signifies that the proposed estimation procedure per-
forms effectively.

Table 2: MSDM Model Simulation Test Statistics.
Parameter 4cn

50 100 300 500
β11 0.04113 0.04079 0.04702 0.04003
β12 0.05474 0.05087 0.04543 0.04181
β13 0.05387 0.04963 0.04317 0.04126
β21 0.05002 0.04771 0.04395 0.04147
β22 0.05007 0.05399 0.04982 0.04781
β23 0.05704 0.05200 0.05017 0.04766
β31 0.05810 0.05014 0.04870 0.04238
β32 0.04932 0.04537 0.04948 0.04201
β33 0.04859 0.04698 0.04465 0.04192
θ11 0.05681 0.04981 0.05457 0.04287
θ12 0.05041 0.04896 0.04553 0.04328
θ13 0.05339 0.04981 0.04375 0.04576
θ21 0.04834 0.04795 0.04536 0.04015
θ22 0.04984 0.04745 0.04360 0.04442
θ23 0.04734 0.04854 0.04456 0.04692
θ31 0.05238 0.05008 0.04863 0.04684
θ32 0.05137 0.05351 0.04955 0.04515
θ33 0.04915 0.04774 0.05040 0.04477
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Furthermore, statistical tests will be carried out for the MSDM model
simulation, with the results presented in Table 2. The tests show that the
values of each parameter are consistently at the 5% significance level, it is
indicating that the MSDM model estimation procedure is statistically signif-
icant.

4 Conclusion

This article introduces a novel model, the Multivariate Spatial Durbin Model
(MSDM), which extends the Multivariate Spatial Auto Regressive (MSAR)
model by incorporating spatial effects on exogenous variables. MSDM model
parameters are estimated using the Maximum Likelihood Estimator (MLE)
method, while hypothesis testing is conducted using the Maximum Like-
lihood Ratio Test (MLRT) test statistic. Monte Carlo simulations demon-
strate that the MSDMmodel parameter estimation utilizing the MLE method
yields precise results. This finding is substantiated by the outcomes of the
MLRT statistical test, which effectively maintains a 5% significance level, it is
indicating the robustness of the model. Notably, the efficiency of the MSDM
model exhibits a positive correlation with increasing sample size, suggesting
its suitability for large datasets.
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