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Abstract
In this paper, the notion of convex absolute value is introduced
as a generalization of absolute value and then used to introduce the
notion of convex normed space as a generalization of normed space.

1 Introduction

In 2012, Kider [1] introduced a new fuzzy normed space; then, in 2019,
Kider and Gheeab [2] introduced the general fuzzy normed space. In 2021,
Khudhair and Kider [3] introduced the a-fuzzy normed space; then, in 2022,
Khalafa and Kider [4] studied the linear operator of various types on a-fuzzy
normed spaces. In 2024, Daher and Kider [5] introduced the convex fuzzy
normed space, Kider [6] introduced the convex fuzzy metric space and Eidi,
Hameed and Kider [7] introduced the convex fuzzy distance between two
convex fuzzy compact set.

Here we introduce a generalization of normed space.

2 The convex absolute value

Definition 2.1. Suppose that the function Ag : R — [0, 00) satisfies
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(i) Ar(\) € [0,00); Ag(A) =0 <= X\ =0,
(1) Ar(A) - Ar(0) = Ar(AJ),

for all0 < o, <1 with o + =1 and Y\, 0 € R. then we say that (R, Ag)
is a convex absolute value space (or c-AVS).

Example 2.2. Forally € R, let A]‘IQ : R — [0, 00) be defined by A]‘IQ (v) = ‘%
when v # 0 and AQ (0) =0. Then (R, AQ) is c-AVS.

To see this,
(i) 0 < A]&'(v) < 00, and A]‘IQ(v) =0 < y=

(i) AL() AR = fr - iy = g = A (7 ).

(i) oAy (7) +HAZ (V) = & + i = THEE = iy = A ().

for all o, u € (0,1) with o + =1 and v, A € R.
Theorem 2.3. Fvery c-AVS is an AVS.

Proof.
If (R,Ag) is a c-AVS, define |A\| = Ag(A) for each A € R. Then (R,| - |)
is an AVS. Conditions (i) and (ii) follow directly. For (iii), since |y + A\| =
Ap(y+ A) < 0Ar(y) + pAr(N) = a7 + p|A[ < 7|+ [A] for all o, u € (0,1)
with 0 + =1 and for all y,\ € R, (R, |- |) is an absolute value space.

Remark 2.4. The converse of Theorem 2.3 is not true in general. For ez-
ample, when (R,|-|) is an AVS, by using oly| + p|A| < |y + Al < |y] + ||
we see that condition (iii) is not satisfied for all o, € (0,1) with o+ p =1
and for all v, A € R. Hence, (R,|-|) is not c-AVS.

Definition 2.5. Let (R, Ag) be c-AVS and let {\;}32, be a sequence in R.
Then { A}, is approaches A € R as k — oo if Vo > 0, we can find N € N
satisfying Ar(A\, — X) < o, for all k > N. We write limg_o0) A\ = A or
A — A or lim(k_wo) AR(Ak — )\) =0.

Theorem 2.6. Assume that (R, Ag) is c-AVS and let {\;}32, be a sequence
m R, If N\, — X and Ay — vy, then A = 7.
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Proof.
Since A\y — A and A\, — v, limy_ oo Ag(Ar —A) = 0 and limy oo Ag( A\ —7) =
0. Thus, Ag[A — 7] = Ag[A — A + X\e — 7] < dAr(A — \g) + pAr(Ax —
~v) for all o, € (0,1) with 0 + g = 1. Therefore, limg_,oo Ag(A — 7) <
o limy oo Ap( A —N)+plimg oo Ar(Ax—7) = 040 = 0. Hence, Ag(A—~) =0
which implies that A — v = 0.

Definition 2.7. If (R, Ag) is c-AVS, then define Ar(a) = Ar(—a) for all
a € R and Ag(1) = 1.

Definition 2.8. Let (R, Ag) be c-AVS and let {\;}32, € R. Then {\;}32 is
a Cauchy sequence if Yo > 0, we can find N € N satisfying Ag(A\, — \;) < 0,
Vk,j = N.

Theorem 2.9. Let (R, Ag) be c-AVS and let {\;}32, be a sequence in R. If
A = A, then it is Cauchy.

Proof.
Since A\, — A so Vd > 0, IN € N satisfying Ag(Apx — ) < 6, Yk > N. Thus,
Vn,m > N Ag(Ae—An) = Ag(e = A+ A=) < phAr(A—AN)+0Ar(A—\,)
for all u,o € (0,1) with 0 + o = 1. Therefore, Ag(A\x — \p) < pé + 0§ =
(i + 0)d = 6. Consequently, {\,}52, is Cauchy.

Theorem 2.10. Let (R, Ag) be c-AVS and let { .}, be a sequence in R.
If \p = A, then all (A,) € { )32, satisfy A\g, — A

Proof.
Ak — A implies limy oo Agr(Ax — A) = 0. Also, {\;}32, is a Cauchy sequence,
so Ag(A, — A\p) — 0, when n — oo and m — oo. Thus, Ag[\g, — A =
AR[)\kn - )\k + )\k - )\] S UAR[)\kn - )\k] +/~LAR[)\k - )\] for all n, o € (O, 1) with
o + p = 1. Therefore, limy_,o Ag[Ar, — A] <00+ p-0 = 0. Consequently,
)\kn — A\

3 The Convex Normed Space

Definition 3.1. Let V be an R-space over R, (R, Ag) is c-AVS and let N :
V — [0,00) be a function. If N satisfies

(1) 0 < N(y) < oo,
(i1) N'(y) =0 if and only if y = 0,
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(iii) N () = Ag(N)N (y), YA € R. X £ 0,

(iv) N(y+g) <yN(y) +0N(g). where~,§ € (0,1) with v+ 8§ =1, for all
y,9€V,

then (V,N) is a convex normed space (or c-NS).

Example 3.2. Define NI 0V — [0,00) by: Nli(y) = ﬁ if y # 0 and
NI0) =0, Vy € V. Then (V,N) is a c-NS when (V,| - ||) is a normed
space. This space is called the c-NS induced by || - ||.

Proof.
(i) NH(y) € [0,00).
(ii) NM(y) =0 <= y=0.
(i) Ar(e) NV(y) = & - pr = o = M ay).

al |y ley
5

(iv) AN (y) + SN (g) = IIPYTII + o = 7||||9£|m<;||||yll > ”yig” = NIy 1 g).

Hence, (V, N is a ¢-NS, for any ,§ € (0,1) with v +6 = 1.
Remark 3.3.

(i) If t,s € [0,00), then (at 4+ (1 — a)s) € [0,00) for any o € (0,1), or
(vt + ds) € [0,00) for any 7,6 € (0,1) with v+ 6 = 1. In general, if
t1,te, ..., tx €[0,00), then (anty + aots + - -+ + agty) € [0,00) for any
ap,ag, ..o € (0,1) with ap + g + -+ -+ ap = 1.

(1) N(wi+wa+ - +wg) < N (wi) + N (ws) +- - -+ N (wy), for all
Wi, Wa, ..., wy € U and oy, ag, ..., € (0,1) with a;+ag+- - +ay = 1.

Proof.
The proof is elementary and so it is omitted.

Theorem 3.4. If N : R — [0,00) defined by; N(t) = Ar(t),Vt € R, then
(R,N) is c-NS.

Proof.
(i) N(t) € [0,00),Vt € R,
(i) N(t) =0 < if Ag(t) =0 < t =0,
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(i) N(t,s) = Ag(t,s) = Ag(t) - Ar(s) = N(t) - N(s),Vt,s € R with t #
0,s #0,

(iv) N(t +s) = Ag(t + s) < yAR(t) + dAR(s) = YN (t) + ON(s),
for any ~,0 € (0,1) with v+ § = 1. Hence, (R, N) is ¢-NS.

Example 3.5. If V. = C[d,b], define N(I) = maxaeiqy Ar[l(a)], V]l € V.
Then (V,N) is ¢-NS.

Proof.
(i) N(1) € ]0,00),VL € V.

(ii)) M(l) = 0 <= maxeecpyAr[l(a)] = 0 <= Agll(a)] = 0,YVa €
4,8 < I(a)=0,Va € |d,b « [=0.

(111) ( l) = maxae[db] AR[T,Z(O()] = AR(t) . maxae[db] AR[Z(Q)] = AR(T,) .
N(1),Vt € R with ¢t # 0.

(iv) N(I +y) = maxaepn Ar[(l + y)(a)] = maxaepy Ar[(l(@) + y(a))] <

maXae(qp VAR[I(r)] + maxaeiap 6Ar[y(a)] for any v, € (0,1) with v+

it
6 = 1. Thus, N (I +y) < ymaxaejqy Ar[l(a)] + d maxaeqy Arly(a)]
AN (1) + 6N (y).

Therefore, (V, ) is ¢-NS.
Theorem 3.6. Fvery c-NS is a NS.

Proof.

If (V,N) is a ¢-NS, define |ly|| = N (y) for all y € V. Then conditions (i),
(ii), and (iii) are simple.

(V) ly+9l = Ny +9) <AN(y) +N(9) = 1yl +6llgll < llyll + llg]l for
all v,0 € (0,1) with y+¢ = 1 and for all w,v € V. Thus, |ly+g| < |lyll+lgll-
Hence, (V.|| - ||) is a normed space.

Remark 3.7. The converse of Theorem 3.6 is not true in general. For ex-
ample, if (V.|| -]) is a normed space, then since v||y|| + d|lg]l < ||y + g| <
lyll + llgll, condition (iv) is not satisfied, since ||y + gl > Y|yl + d|lgll, for
all v,6 € (0,1) with v+ =1 and for all y,g € V. Hence, (V,|-||) is not
c-NS.

Theorem 3.8. If (Vi,N7) and (Va, N2) are two ¢-NS, then (V,N) is ¢-NS
where V=V x Vy and N'{(y1,y2)] = YN1(y1) + oNa(y2) for all (y1,y2) € V,
for all v,0 € (0,1) with v+ 6 = 1.
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Proof.
(i) Since 0 < Ni(y1) < o0 and 0 < Na(ys) < 00, 0 < N[(y1,92)] < o0

(i) N[(y1,y2)] = 0 if and only if YNi(y1) + oN2(y2) = 0 if and only if
Ni(y1) = 0 and Na(y2) = 0 if and only if 53 = 0 and y = 0 <~
(y1,92) = (0,0).

(iti) Ma(yr,y2)] = N(ayr, ays)] = yN1(ay:)+0Nz(ays) < Ag(a)-yNi(ay:)+
Ag(a) - N2 (y2) < Ar(a)[YNi(y1) + INa(y2)] = Ar(a) - N (y1, v2)]-

(iv) M(y1,92) + (91,92)] = N(y1 + g1) + (y2 + g2)] = YWNi(y1 + g1) +
ONa(y2 + 92) < Y[oN1(y1) + ON1(g1)] + 0[oNa(y2) + ON2(g2)] where
v+ d=1forall v,§ € (0,1) and 0 + 6 = 1 for all ,0 € (0,1). Thus,
N[(yl,yz) + (91, 92)] < U[VNl(yl) + 5N2(y2)] + 9[7/\/1(91) + 5N2(92)]
= oN{(y1,92)] + ON(g1, 92)]-

Hence, (V,N) is ¢-NS.

The proof of the following results can be established by following a simi-
lar technique as thaT of the proof of Theorem 3.8.

Corollary 3.9. If (Vi, M), (Vo, N3), ..., (Vi,Ni) are c-NS, then (V,N) is
c-NS where V.= V; X Vy X +-- x V. and N[(y1,y2,---,ux)] = 0N (y1) +
SN2 (y2)+- - -+ 0Nk (yk), for all (y1,ya, ..., yr) € V, where §;+0g+- - -+ =
1, fOT all (51,52, ce ,(5k S (O, 1)

Corollary 3.10. If (V,N) is ¢-NS, then (V¥ Ny) is ¢-NS where V¥ =V x
V x - x V (k-times) and Ny|[(y1,y2, - -, yk)] = 0N (y1) + 02N (y2) + -+ - +
N (yx) for all (y1,v2,...,yx) € V, where 61 + 0o + --- 4+ 0, = 1, for all
51,6910k € (0,1).

Definition 3.11. If (V,N) is c-NS, then

(i) For any y € V, let c — B(y,a) = {v € V: N(y —v) < a}. Then
— B(y,a) is a conver open ball with the center y € V and radius
a > 0.

(1)) W C 'V is a convex open set (or simply c-0S) if ¢ — B(w,a) C W for
any w € W and for some a > 0.

Theorem 3.12. If ¢ — B(y, a) is a convex open ball in c-NS (V,N), then it
is a c-05S.
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Proof.

Let ¢ — B(y,a) be a convex open ball, where y € V and o > 0. If v €
¢ —B(y,«), then N(y —v) < a. Put = N(y— ). Then 8 < a and there
exists o > 0 such that (y5 + do) < «, where v,6 € (0,1) with v+ 6 = 1.
Consider ¢ — B(v, o). To prove ¢ — B(v,0) C ¢ — B(y, a), let z € ¢ — B(v, o).
So, N(v—=z) < 0. Hence, N (y—z) < YN (y—v)+0N (v—=z), where 6 € (0,1)
with v+ 6 = 1. Thus, N(y — 2) < v68 + do, so z € ¢ — B(y,«). That is,
c—B(v,0) C c— B(y, ). Therefore, ¢ — B(y, ) is a c-OS.

Definition 3.13.
(i) A subset D of a ¢-NS (V,N) is convex closed if V\ D is a c-OS.

(ii) The convex closure B of a subset of a c-NS (V,N) is E = ({D :
D is convex closed in V and E C D}.

The proof of the following lemma is clear.

Lemma 3.14. Let (V,N) be a c-NS.
(i) If G1,Ga, ..., Gy, ... are c-OS in'V, then | J;Z, G; is c-OS in V.
(i1) If Gy, Ga, ..., Gy are c-OS in 'V, then ﬂle G, is c-OS in V.

Definition 3.15. Let (V,N) be ¢-NS and let (y) € V. Then (yx) is convex
converges to y € V when k — oo (or simply up — u) if ¥V, ¢ — B(y, 1),
M such that yp € ¢ — B(y,t), Yk > M where t > 0. This is equivalent to
Vi > 0, AM € N satisfies N(yp —y) < t, Vk > M or lim_,ooyp = y or
lim,, oo N (yx — y) = 0.

Lemma 3.16. In ¢-NS (V,N) if uy, — p and up — q, then p = q.

Proof.
Since u, — p and up — ¢, N(up —p) = 0 and N (u, — q¢) — 0 as k — oc.
Thus, N'(p — q) = N(p — ux +ux — q) < YN (p — ug) + 0N (uy, — q) where
7,0 € (0,1) with v + 8§ = 1. Therefore, N'(p — ¢) < ylimp_oo N(p — ug) +
dlimyg oo N(upg—q) =v-04+0-0 = 0. As a result, N'(p—¢q) = 0 which implies
that p = q.

Definition 3.17. If (V,N) is ¢-NS, then

(i) Y C V is convex bounded (or simply CB) if I\ > 0, satisfying N (p) <
A, Vp €Y. Otherwise, Y is not CB.

(11) A sequence (uy) in a c-NS (U,N') is CBif A\ > 0, satisfying N (uy,) <
A, Vk € N. Otherwise, (uy) is not CB.



454 S. R. Alsaffar, J. R. Kider

Proposition 3.18. In a ¢-NS (V,N),
(i) if G is a CB subset of V, then \G is CB for every A # 0 € R.
(ii) if (yx) is a CB sequence in V, then (ayy) is CB for every a # 0 € R.
(i) If G and W are CB subsets of V, then G+ W is CB.
() If (gx) and (yx) are two CB sequences in 'V, then (g, + yx) is CB.
Proof.

(i) Since G is a CB subset of V, there is u > 0 such that N (g) < p for
all g € G. Thus, N (Ag) < Ag(MNN(g9) < Ag(Mpu < 8 with 3 > 0.
Therefore, A\G is CB.

(i) If (yx) is a CB sequence in V, then there exists g > 0 such that N (y;) <
w, Vk € N. Thus, N (ayi) < Ar(a)N () < Ar(a)p < with 8 >
0. Therefore, (ayy) is CB.

(iii) Since G and W are CB, 3 > 0, € > 0 satisfying N'(I) < p as well as
N(f)<eVieG, feW. Thus, NI+ f) <ON()+yN(f) < op+e
with §+7 = 1. So I\ > 0 satisfying (du+ve) < A. Hence, N (I+f) < A,
V(I+ f) € (G+W). Thus, G+ W is CB.

(iv) Since (gx) and (yx) are two CB sequences in V, 3 > 0, € > 0 satisfying
N(gr) < pas well as N(yx) < €, Vk € N. Thus, N(gx + yx) <
ON (gr) + YN (yr) < dp + ve with 6 ++ = 1. So I\ > 0 satisfying
(0p + ve) < A. Hence, N(gr + yx) < A\, Vk € N.

Therefore, (gx + yi) is CB.

Proposition 3.19. Let (yx) be a sequence in a ¢-NS (V,N). If y >y €V,
then (yx) is CB.

Proof.
Since yy = y € V,Va > 0, 3N € N satisfying M (yx —y) < a, for all k > N.
Thus, N (yx) < 8N (yr — y) + 62N (y) < d1a + 02N (y),where 6; + 6 = 1.
Then, put d,a + 5N (y) = S for some § > 0, which follows that N (yz) < 3
for all k£ € N. Hence, (y;) is CB.

Definition 3.20. Let (V,N') be ¢-NS, (yr) € V, (yx) is convex Cauchy in V
if Ve >0, 3N €N satisfying N (yr. — ym) < €, Yk,m > N.



Convex Normed Space 455

The proof of the following lemma is immediate.

Lemma 3.21. Let Ag[N (y)] = N(y) for ally € V. When (V,N) is ¢-NS,
so AN (y) = N(9)] S N(y —g) for ally,g € V.

Lemma 3.22. If (A, N) is c-FN, then N(y —g) =N(9—y), Vy,g € V.
Proof.
N(y—g) = N[(=D(9—y)] < Ar(=1)-N(g—y) = Az(1)-N(9—y) = N(9—v)
so N(u—v) < N(v—u). By using a similar technique, N (v —u) < N (u—0v).
ThU_S, N(y_g) :N(g_y)> \v/ymg €V.
Definition 3.23. Let # 0, if M: V x V — [0, 00) satisfies
(1) M(y,g) € [0,00).
(i) y =g < M(y,9) =0.
(iir) My, g) = M(g,y).

(iv) yM(y,b) + M(b,g) > M(y,g), VO < 7,0 < 1 with v+ = 1 and
Yy, g, w € V.

Then (V,M) is a convex metric space (or simply c-MS).

The next theorem is easy to prove.

Theorem 3.24. If (V,N) is ¢-NS, then (V,My) is c-MS, where My (y, g) =
N(y—g), forally,ge V.

Definition 3.25. If (V,N) is ¢-NS, then D C V is known as convex dense
in V if whenever D =V.

Theorem 3.26. If (V,N) is a c-NS, then it is a topological space.

Proof.
If (V,N)is a ¢-NS, then put Ty = {W CV: W is ¢-OS in V}.

(i) 0,V e Ty.
(ii) If {E; : i € I} € Ty, then {J,.; E; € Ty by Lemma 3.14.

(iii) Let Eq,Eo, ..., Eyx € Ty, then ﬂle E; € Ty by Lemma 3.14.
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Hence, (V, Ty ) is a topological space.

Definition 3.27. In ¢-NS, (V,N) is convex complete if ¥V convexr Cauchy
sequence (yx) € V, then Jy € V, satisfying yp — y.

Theorem 3.28. In ¢-NS, (V,N), if yv — y € V, then (yx) is convex
Cauchy.

Proof.
Let (yx) € Vwith yp =y € V. So,V0 < o < 1, AN satisfying N (yx—vy) < o,
Vk > N. Thus, for each m,k > N, N(yx — ym) < AN (yx — ) + ON (Y — Ym),
where 7,6 € (0,1) with v+ § = 1. Therefore, N (y — ym) < ao + Bo = 0.
Hence, (ug) is a convex fuzzy Cauchy sequence.

Theorem 3.29. In ¢-NS, (V,N) if D C V, then the following statements
are equivalent

(i) d € D.

Proof.
(ii) = (i): If (dy) € D with d, — d, then d € D or for every ¢ — B(d, \),
dy # d, and so d is a limit of D. Therefore, d € D.
(i) = (ii): Let d € D. If d € D, then (d,d,...,d,...) is the desired sequence.
If d ¢ D, then (di,) € D since N'(dy — d) < 1 for each k =1,2,3,.... Thus,
c —B(d, 1) contains dy € D and dj, — d.

&
4 Convex continuous and uniform convex con-
tinuous operators

Definition 4.1. If (V,Ny) and (Y, Ny) are two c-NS, then

(i) T :V =Y is convex continuous at v € V if Va >0, 38 > 0 such that
Ny(v —y) < B implies Ny[T (v) — T (y)] < o, Yy € Y. If this is true

Vv eV, then T is conver continuous on V.

(1)) T : V= Y is strongly convex continuous at v € V if Ny(v —y) <
Ny[T(v) = T(y)], Vy € Y. If this is true Vv € V, then T is strongly
convez continuous on V.
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Proposition 4.2. Every strongly convex continuous operator on 'V is convex
continuous on V. whenever (V, Ny) and (Y, Ny) are two c-NS.

Proof.
If 7:V — Y is a strongly convex continuous operator on V, then for any
v e Vand any y € Y, Ny(v —y) < Ny[T(v) — T(y)] for . Thus, for ev-
ery a > 0 with MVy[T(v) — T(y)] < a, we can find some § > 0 satisfying
Ny(v —y) < B < Ny[T(v) —T(y)] for any y € Y. Hence, T : V= Y is a
convex continuous operator on v since v was an arbitrary point of V.

The proof of the following theorem is easy.

Theorem 4.3. If (V,Ny) and (Y,Ny) are two c-NS, then the operator T :
V — Y is convex continuous at y € V if and only if T(yr) — T(y) € Y
whenever Yy, — y € V.

Theorem 4.4. If (yx) is a sequence in V with y, — y, then N'(yx) — N (y)
when (V,N) is c-NS.

Proof.
If (y) € V with yp — v, then limg_,oo N (yr, — y) = 0. Thus, Ar[N (yx) —
N(y)] < N(yx—vy). Hence, limy,_,o0 Ar[N (yx) =N (y)] < limg oo N (yp —y) =
0. Consequently, N (yx) — N (y).
The proof of the following theorem is easy.

Theorem 4.5. If (V, Ny) and (Y, Ny) are two ¢-NS, then the following are
equivalent:

(i) The operator T : V — Y is convexr continuous at v € V.
(ii) T-H(P) is c-OS in' V for all c-OS subset P of Y.
(iii) TY(E) is convex closed in 'V for all convex closed E C Y.
Definition 4.6. If (V,Ny) and (Y, Ny) are c-NS, then

(i) T :V =Y is uniformly convex continuous onV, ifV0 < «a, 35,0 <
with Ny[T (v) — T (y)] < a whenever Ny(v —y) < 8, for all v,y € V.

(it) T : V=Y is strong uniformly convex continuous on 'V, if Ny(v—y) <
Ny [T (v) = T(y)], for all v,y € V.

Proposition 4.7. If (V,Ny) and (Y, Ny) are c-NS, then every strongly uni-
formly convex continuous operator on V is uniformly convex continuous on
V.
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Proof.
If 7:V — Y is strongly uniformly convex continuous on V, then Ny(v—y) <
Ny [T (v) = T (y)], for all v,y € V. Thus, for every 0 < «, with Ny[T (v) —
T (y)] < «, we can find some 0 < 3 satisfying Ny(v —y) < 8 < Ny[T (v) —
T (y)] for any v,y € V. Hence, T : V — Y is a uniformly convex continuous
operator on V since v and y were arbitrary points of V.

Theorem 4.8. Assume (V,Ny) and (Y, Ny) are c-NS and the operator T :
V — Y is uniformly conver continuous on V. Then (T (yx)) is a convex
Cauchy sequence in' Y if (yy) is a convexr Cauchy sequence in V.

Proof.
Va, 0 < a, 38,0 < fsuch that Ny(g—y) <  implies Ny [T () =T (y)] < «,
Vg,y € V. But (yx) is convex Cauchy. Thus, VO < §, 3N € N such that
Ny(yr — Ym) < B, Ym, k > N. Hence, Ny[T (yx) — T (ym)] < a, Vk,m > N.
Thus, (7 (yx)) is a convex Cauchy sequence in Y.
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