International Journal of Mathematics and Computer Science Volume **20**, Issue no. 1, (2025), 447–458 DOI: https://doi.org/10.69793/ijmcs/01.2025/saif

Convex Normed Space

Saif R. Alsaffar, Jehad R. Kider

Department of Mathematics and Computer Applications Faculty of Applied Sciences University of Technology Baghdad, Iraq

email: 100396@uotechnology.edu.iq, jehad.r.kider@uotechnology.edu.iq

(Received November 18,2024, Accepted December 18, 2024, Published December 19, 2024)

Abstract

In this paper, the notion of convex absolute value is introduced as a generalization of absolute value and then used to introduce the notion of convex normed space as a generalization of normed space.

1 Introduction

In 2012, Kider [1] introduced a new fuzzy normed space; then, in 2019, Kider and Gheeab [2] introduced the general fuzzy normed space. In 2021, Khudhair and Kider [3] introduced the a-fuzzy normed space; then, in 2022, Khalafa and Kider [4] studied the linear operator of various types on a-fuzzy normed spaces. In 2024, Daher and Kider [5] introduced the convex fuzzy normed space, Kider [6] introduced the convex fuzzy metric space and Eidi, Hameed and Kider [7] introduced the convex fuzzy distance between two convex fuzzy compact set.

Here we introduce a generalization of normed space.

2 The convex absolute value

Definition 2.1. Suppose that the function $\mathbb{A}_{\mathbb{R}} : \mathbb{R} \to [0,\infty)$ satisfies

Key words and phrases: Convex normed space, Convex metric space,
Convex bounded set, convex complete space, Convex continuous operator.
AMS (MOS) Subject Classifications: 46S99.
ISSN 1814-0432, 2025, https://future-in-tech.net

(i)
$$\mathbb{A}_{\mathbb{R}}(\lambda) \in [0, \infty); \mathbb{A}_{\mathbb{R}}(\lambda) = 0 \iff \lambda = 0,$$

(ii) $\mathbb{A}_{\mathbb{R}}(\lambda) \cdot \mathbb{A}_{\mathbb{R}}(\delta) = \mathbb{A}_{\mathbb{R}}(\lambda\delta),$
(iii) $\mathbb{A}_{\mathbb{R}}(\lambda + \delta) \leq \sigma \mathbb{A}_{\mathbb{R}}(\lambda) + \mu \mathbb{A}_{\mathbb{R}}(\delta),$

for all $0 < \sigma, \mu < 1$ with $\sigma + \mu = 1$ and $\forall \lambda, \delta \in \mathbb{R}$. then we say that $(\mathbb{R}, \mathbb{A}_{\mathbb{R}})$ is a convex absolute value space (or c-AVS).

Example 2.2. For all $\gamma \in \mathbb{R}$, let $\mathbb{A}_{\mathbb{R}}^{|\cdot|} : \mathbb{R} \to [0,\infty)$ be defined by $\mathbb{A}_{\mathbb{R}}^{|\cdot|}(\gamma) = \frac{1}{|\gamma|}$ when $\gamma \neq 0$ and $\mathbb{A}_{\mathbb{R}}^{|\cdot|}(0) = 0$. Then $(\mathbb{R}, \mathbb{A}_{\mathbb{R}}^{|\cdot|})$ is c-AVS.

To see this,

(i) $0 \leq \mathbb{A}_{\mathbb{R}}^{|\cdot|}(\gamma) < \infty$, and $\mathbb{A}_{\mathbb{R}}^{|\cdot|}(\gamma) = 0 \iff \gamma = 0$.

(ii)
$$\mathbb{A}_{\mathbb{R}}^{|\cdot|}(\gamma) \cdot \mathbb{A}_{\mathbb{R}}^{|\cdot|}(\lambda) = \frac{1}{|\gamma|} \cdot \frac{1}{|\lambda|} = \frac{1}{|\gamma \cdot \lambda|} = \mathbb{A}_{\mathbb{R}}^{|\cdot|}(\gamma \cdot \lambda).$$

(iii) $\sigma \mathbb{A}_{\mathbb{R}}^{|\cdot|}(\gamma) + \mu \mathbb{A}_{\mathbb{R}}^{|\cdot|}(\lambda) = \frac{\sigma}{|\gamma|} + \frac{\mu}{|\lambda|} = \frac{\sigma|\lambda| + \mu|\gamma|}{|\gamma||\lambda|} \ge \frac{1}{|\gamma+\lambda|} = \mathbb{A}_{\mathbb{R}}^{|\cdot|}(\gamma+\lambda).$

for all $\sigma, \mu \in (0, 1)$ with $\sigma + \mu = 1$ and $\gamma, \lambda \in \mathbb{R}$.

Theorem 2.3. Every c-AVS is an AVS.

Proof.

If $(\mathbb{R}, \mathbb{A}_{\mathbb{R}})$ is a *c*-AVS, define $|\lambda| = \mathbb{A}_{\mathbb{R}}(\lambda)$ for each $\lambda \in \mathbb{R}$. Then $(\mathbb{R}, |\cdot|)$ is an AVS. Conditions (i) and (ii) follow directly. For (iii), since $|\gamma + \lambda| = \mathbb{A}_{\mathbb{R}}(\gamma + \lambda) \leq \sigma \mathbb{A}_{\mathbb{R}}(\gamma) + \mu \mathbb{A}_{\mathbb{R}}(\lambda) = \sigma |\gamma| + \mu |\lambda| \leq |\gamma| + |\lambda|$ for all $\sigma, \mu \in (0, 1)$ with $\sigma + \mu = 1$ and for all $\gamma, \lambda \in \mathbb{R}$, $(\mathbb{R}, |\cdot|)$ is an absolute value space.

Remark 2.4. The converse of Theorem 2.3 is not true in general. For example, when $(\mathbb{R}, |\cdot|)$ is an AVS, by using $\sigma|\gamma| + \mu|\lambda| \leq |\gamma + \lambda| \leq |\gamma| + |\lambda|$ we see that condition (iii) is not satisfied for all $\sigma, \mu \in (0, 1)$ with $\sigma + \mu = 1$ and for all $\gamma, \lambda \in \mathbb{R}$. Hence, $(\mathbb{R}, |\cdot|)$ is not c-AVS.

Definition 2.5. Let $(\mathbb{R}, \mathbb{A}_{\mathbb{R}})$ be c-AVS and let $\{\lambda_k\}_{k=1}^{\infty}$ be a sequence in \mathbb{R} . Then $\{\lambda_k\}_{k=1}^{\infty}$ is approaches $\lambda \in \mathbb{R}$ as $k \to \infty$ if $\forall \sigma > 0$, we can find $N \in \mathbb{N}$ satisfying $\mathbb{A}_{\mathbb{R}}(\lambda_k - \lambda) < \sigma$, for all $k \ge N$. We write $\lim_{(k \to \infty)} \lambda_k = \lambda$ or $\lambda_k \to \lambda$ or $\lim_{(k \to \infty)} \mathbb{A}_{\mathbb{R}}(\lambda_k - \lambda) = 0$.

Theorem 2.6. Assume that $(\mathbb{R}, \mathbb{A}_{\mathbb{R}})$ is c-AVS and let $\{\lambda_k\}_{k=1}^{\infty}$ be a sequence in \mathbb{R} . If $\lambda_k \to \lambda$ and $\lambda_k \to \gamma$, then $\lambda = \gamma$.

Convex Normed Space

Proof.

Since $\lambda_k \to \lambda$ and $\lambda_k \to \gamma$, $\lim_{k\to\infty} \mathbb{A}_{\mathbb{R}}(\lambda_k - \lambda) = 0$ and $\lim_{k\to\infty} \mathbb{A}_{\mathbb{R}}(\lambda_k - \gamma) = 0$. Thus, $\mathbb{A}_{\mathbb{R}}[\lambda - \gamma] = \mathbb{A}_{\mathbb{R}}[\lambda - \lambda_k + \lambda_k - \gamma] < \sigma \mathbb{A}_{\mathbb{R}}(\lambda - \lambda_k) + \mu \mathbb{A}_{\mathbb{R}}(\lambda_k - \gamma)$ for all $\sigma, \mu \in (0, 1)$ with $\sigma + \mu = 1$. Therefore, $\lim_{k\to\infty} \mathbb{A}_{\mathbb{R}}(\lambda - \gamma) \leq \sigma \lim_{k\to\infty} \mathbb{A}_{\mathbb{R}}(\lambda_k - \lambda) + \mu \lim_{k\to\infty} \mathbb{A}_{\mathbb{R}}(\lambda_k - \gamma) = 0 + 0 = 0$. Hence, $\mathbb{A}_{\mathbb{R}}(\lambda - \gamma) = 0$ which implies that $\lambda - \gamma = 0$.

Definition 2.7. If $(\mathbb{R}, \mathbb{A}_{\mathbb{R}})$ is c-AVS, then define $\mathbb{A}_{\mathbb{R}}(\alpha) = \mathbb{A}_{\mathbb{R}}(-\alpha)$ for all $\alpha \in \mathbb{R}$ and $\mathbb{A}_{\mathbb{R}}(1) = 1$.

Definition 2.8. Let $(\mathbb{R}, \mathbb{A}_{\mathbb{R}})$ be c-AVS and let $\{\lambda_k\}_{k=1}^{\infty} \in \mathbb{R}$. Then $\{\lambda_k\}_{k=1}^{\infty}$ is a Cauchy sequence if $\forall \sigma > 0$, we can find $N \in \mathbb{N}$ satisfying $\mathbb{A}_{\mathbb{R}}(\lambda_k - \lambda_j) < \sigma$, $\forall k, j \geq N$.

Theorem 2.9. Let $(\mathbb{R}, \mathbb{A}_{\mathbb{R}})$ be c-AVS and let $\{\lambda_k\}_{k=1}^{\infty}$ be a sequence in \mathbb{R} . If $\lambda_k \to \lambda$, then it is Cauchy.

Proof.

Since $\lambda_k \to \lambda$ so $\forall \delta > 0$, $\exists N \in \mathbb{N}$ satisfying $\mathbb{A}_{\mathbb{R}}(\lambda_k - \lambda) < \delta$, $\forall k \ge N$. Thus, $\forall n, m \ge N \mathbb{A}_{\mathbb{R}}(\lambda_k - \lambda_m) = \mathbb{A}_{\mathbb{R}}(\lambda_k - \lambda + \lambda - \lambda_m) \le \mu \mathbb{A}_{\mathbb{R}}(\lambda_k - \lambda) + \sigma \mathbb{A}_{\mathbb{R}}(\lambda - \lambda_m)$ for all $\mu, \sigma \in (0, 1)$ with $\sigma + \mu = 1$. Therefore, $\mathbb{A}_{\mathbb{R}}(\lambda_k - \lambda_m) \le \mu \delta + \sigma \delta = (\mu + \sigma)\delta = \delta$. Consequently, $\{\lambda_k\}_{k=1}^{\infty}$ is Cauchy.

Theorem 2.10. Let $(\mathbb{R}, \mathbb{A}_{\mathbb{R}})$ be c-AVS and let $\{\lambda_k\}_{k=1}^{\infty}$ be a sequence in \mathbb{R} . If $\lambda_k \to \lambda$, then all $(\lambda_{k_n}) \subseteq \{\lambda_k\}_{k=1}^{\infty}$ satisfy $\lambda_{k_n} \to \lambda$.

Proof.

 $\lambda_k \to \lambda$ implies $\lim_{k\to\infty} \mathbb{A}_{\mathbb{R}}(\lambda_k - \lambda) = 0$. Also, $\{\lambda_k\}_{k=1}^{\infty}$ is a Cauchy sequence, so $\mathbb{A}_{\mathbb{R}}(\lambda_n - \lambda_m) \to 0$, when $n \to \infty$ and $m \to \infty$. Thus, $\mathbb{A}_{\mathbb{R}}[\lambda_{k_n} - \lambda] = \mathbb{A}_{\mathbb{R}}[\lambda_{k_n} - \lambda_k + \lambda_k - \lambda] \leq \sigma \mathbb{A}_{\mathbb{R}}[\lambda_{k_n} - \lambda_k] + \mu \mathbb{A}_{\mathbb{R}}[\lambda_k - \lambda]$ for all $\mu, \sigma \in (0, 1)$ with $\sigma + \mu = 1$. Therefore, $\lim_{k\to\infty} \mathbb{A}_{\mathbb{R}}[\lambda_{k_n} - \lambda] \leq \sigma \cdot 0 + \mu \cdot 0 = 0$. Consequently, $\lambda_{k_n} \to \lambda$.

3 The Convex Normed Space

Definition 3.1. Let \mathbb{V} be an \mathbb{R} -space over R, $(\mathbb{R}, \mathbb{A}_{\mathbb{R}})$ is c-AVS and let \mathcal{N} : $\mathbb{V} \to [0, \infty)$ be a function. If \mathcal{N} satisfies

- (i) $0 \leq \mathcal{N}(y) < \infty$,
- (ii) $\mathcal{N}(y) = 0$ if and only if y = 0,

(*iii*)
$$\mathcal{N}(\lambda y) = \mathbb{A}_{\mathbb{R}}(\lambda)\mathcal{N}(y), \, \forall \lambda \in \mathbb{R}. \, \lambda \neq 0,$$

(iv) $\mathcal{N}(y+g) \leq \gamma \mathcal{N}(y) + \delta \mathcal{N}(g)$. where $\gamma, \delta \in (0,1)$ with $\gamma + \delta = 1$, for all $y, g \in \mathbb{V}$,

then $(\mathbb{V}, \mathcal{N})$ is a convex normed space (or c-NS).

Example 3.2. Define $\mathcal{N}^{\|\cdot\|} : \mathbb{V} \to [0,\infty)$ by: $\mathcal{N}^{\|\cdot\|}(y) = \frac{1}{\|y\|}$ if $y \neq 0$ and $\mathcal{N}^{\|\cdot\|}(0) = 0$, $\forall y \in \mathbb{V}$. Then $(\mathbb{V}, \mathcal{N}^{\|\cdot\|})$ is a c-NS when $(\mathbb{V}, \|\cdot\|)$ is a normed space. This space is called the c-NS induced by $\|\cdot\|$.

Proof.

- (i) $\mathcal{N}^{\|\cdot\|}(y) \in [0,\infty).$
- (ii) $\mathcal{N}^{\|\cdot\|}(y) = 0 \iff y = 0.$
- (iii) $\mathbb{A}_{\mathbb{R}}(\alpha) \cdot \mathcal{N}^{\|\cdot\|}(y) = \frac{1}{|\alpha|} \cdot \frac{1}{\|y\|} = \frac{1}{\|\alpha y\|} = \mathcal{N}^{\|\cdot\|}(\alpha y).$

(iv)
$$\gamma \mathcal{N}^{\|\cdot\|}(y) + \delta \mathcal{N}^{\|\cdot\|}(g) = \frac{\gamma}{\|y\|} + \frac{\delta}{\|g\|} = \frac{\gamma \|g\| + \delta \|y\|}{\|y\| \|g\|} \ge \frac{1}{\|y+g\|} = \mathcal{N}^{\|\cdot\|}(y+g).$$

Hence, $(\mathbb{V}, \mathcal{N}^{\|\cdot\|})$ is a *c*-NS, for any $\gamma, \delta \in (0, 1)$ with $\gamma + \delta = 1$.

Remark 3.3.

- (i) If $t, s \in [0, \infty)$, then $(\alpha t + (1 \alpha)s) \in [0, \infty)$ for any $\alpha \in (0, 1)$, or $(\gamma t + \delta s) \in [0, \infty)$ for any $\gamma, \delta \in (0, 1)$ with $\gamma + \delta = 1$. In general, if $t_1, t_2, \ldots, t_k \in [0, \infty)$, then $(\alpha_1 t_1 + \alpha_2 t_2 + \cdots + \alpha_k t_k) \in [0, \infty)$ for any $\alpha_1, \alpha_2, \ldots, \alpha_k \in (0, 1)$ with $\alpha_1 + \alpha_2 + \cdots + \alpha_k = 1$.
- (*ii*) $\mathcal{N}(w_1 + w_2 + \dots + w_k) \leq \alpha_1 \mathcal{N}(w_1) + \alpha_2 \mathcal{N}(w_2) + \dots + \alpha_k \mathcal{N}(w_k)$, for all $w_1, w_2, \dots, w_k \in U$ and $\alpha_1, \alpha_2, \dots, \alpha_k \in (0, 1)$ with $\alpha_1 + \alpha_2 + \dots + \alpha_k = 1$.

Proof.

The proof is elementary and so it is omitted.

Theorem 3.4. If $\mathcal{N} : \mathbb{R} \to [0,\infty)$ defined by; $\mathcal{N}(t) = \mathbb{A}_{\mathbb{R}}(t), \forall t \in \mathbb{R}$, then $(\mathbb{R}, \mathcal{N})$ is c-NS.

Proof.

- (i) $\mathcal{N}(t) \in [0,\infty), \forall t \in \mathbb{R},$
- (ii) $\mathcal{N}(t) = 0 \iff \text{if } \mathbb{A}_{\mathbb{R}}(t) = 0 \iff t = 0,$

(iii) $\mathcal{N}(t,s) = \mathbb{A}_{\mathbb{R}}(t,s) = \mathbb{A}_{\mathbb{R}}(t) \cdot \mathbb{A}_{\mathbb{R}}(s) = \mathcal{N}(t) \cdot \mathcal{N}(s), \forall t, s \in \mathbb{R} \text{ with } t \neq 0, s \neq 0,$

(iv)
$$\mathcal{N}(t+s) = \mathbb{A}_{\mathbb{R}}(t+s) \le \gamma \mathbb{A}_{\mathbb{R}}(t) + \delta \mathbb{A}_{\mathbb{R}}(s) = \gamma \mathcal{N}(t) + \delta \mathcal{N}(s),$$

for any $\gamma, \delta \in (0, 1)$ with $\gamma + \delta = 1$. Hence, $(\mathbb{R}, \mathcal{N})$ is c-NS.

Example 3.5. If $\mathbb{V} = C[d, b]$, define $\mathcal{N}(l) = \max_{\alpha \in [d, b]} \mathbb{A}_{\mathbb{R}}[l(\alpha)], \forall l \in \mathbb{V}$. Then $(\mathbb{V}, \mathcal{N})$ is c-NS.

Proof.

- (i) $\mathcal{N}(l) \in [0,\infty), \forall l \in \mathbb{V}.$
- (ii) $\mathcal{N}(l) = 0 \iff \max_{\alpha \in [a,b]} \mathbb{A}_{\mathbb{R}}[l(\alpha)] = 0 \iff \mathbb{A}_{\mathbb{R}}[l(\alpha)] = 0, \forall \alpha \in [d,b] \iff l = 0.$
- (iii) $\mathcal{N}(tl) = \max_{\alpha \in [d,b]} \mathbb{A}_{\mathbb{R}}[tl(\alpha)] = \mathbb{A}_{\mathbb{R}}(t) \cdot \max_{\alpha \in [d,b]} \mathbb{A}_{\mathbb{R}}[l(\alpha)] = \mathbb{A}_{\mathbb{R}}(t) \cdot \mathcal{N}(l), \forall t \in \mathbb{R} \text{ with } t \neq 0.$
- (iv) $\mathcal{N}(l+y) = \max_{\alpha \in [d,b]} \mathbb{A}_{\mathbb{R}}[(l+y)(\alpha)] = \max_{\alpha \in [d,b]} \mathbb{A}_{\mathbb{R}}[(l(\alpha)+y(\alpha))] \leq \max_{\alpha \in [d,b]} \gamma \mathbb{A}_{\mathbb{R}}[l(\alpha)] + \max_{\alpha \in [d,b]} \delta \mathbb{A}_{\mathbb{R}}[y(\alpha)] \text{ for any } \gamma, \delta \in (0,1) \text{ with } \gamma + \delta = 1. \text{ Thus, } \mathcal{N}(l+y) \leq \gamma \max_{\alpha \in [a,b]} \mathbb{A}_{\mathbb{R}}[l(\alpha)] + \delta \max_{\alpha \in [a,b]} \mathbb{A}_{\mathbb{R}}[y(\alpha)] = \gamma \mathcal{N}(l) + \delta \mathcal{N}(y).$

Therefore, $(\mathbb{V}, \mathcal{N})$ is c-NS.

Theorem 3.6. Every c-NS is a NS.

Proof.

If $(\mathbb{V}, \mathcal{N})$ is a c-NS, define $||y|| = \mathcal{N}(y)$ for all $y \in \mathbb{V}$. Then conditions (i), (ii), and (iii) are simple.

(iv) $||y+g|| = \mathcal{N}(y+g) \leq \gamma \mathcal{N}(y) + \delta \mathcal{N}(g) = \gamma ||y|| + \delta ||g|| \leq ||y|| + ||g||$ for all $\gamma, \delta \in (0, 1)$ with $\gamma + \delta = 1$ and for all $u, v \in \mathbb{V}$. Thus, $||y+g|| \leq ||y|| + ||g||$. Hence, $(\mathbb{V}, \|\cdot\|)$ is a normed space.

Remark 3.7. The converse of Theorem 3.6 is not true in general. For example, if $(\mathbb{V}, \|\cdot\|)$ is a normed space, then since $\gamma \|y\| + \delta \|g\| \le \|y + g\| \le \|y\| + \|g\|$, condition (iv) is not satisfied, since $\|y + g\| \ge \gamma \|y\| + \delta \|g\|$, for all $\gamma, \delta \in (0, 1)$ with $\gamma + \delta = 1$ and for all $y, g \in \mathbb{V}$. Hence, $(\mathbb{V}, \|\cdot\|)$ is not c-NS.

Theorem 3.8. If $(\mathbb{V}_1, \mathcal{N}_1)$ and $(\mathbb{V}_2, \mathcal{N}_2)$ are two c-NS, then $(\mathbb{V}, \mathcal{N})$ is c-NS where $\mathbb{V} = \mathbb{V}_1 \times \mathbb{V}_2$ and $\mathcal{N}[(y_1, y_2)] = \gamma \mathcal{N}_1(y_1) + \delta \mathcal{N}_2(y_2)$ for all $(y_1, y_2) \in \mathbb{V}$, for all $\gamma, \delta \in (0, 1)$ with $\gamma + \delta = 1$.

Proof.

- (i) Since $0 \leq \mathcal{N}_1(y_1) < \infty$ and $0 \leq \mathcal{N}_2(y_2) < \infty, 0 \leq \mathcal{N}[(y_1, y_2)] < \infty$
- (ii) $\mathcal{N}[(y_1, y_2)] = 0$ if and only if $\gamma \mathcal{N}_1(y_1) + \delta \mathcal{N}_2(y_2) = 0$ if and only if $\mathcal{N}_1(y_1) = 0$ and $\mathcal{N}_2(y_2) = 0$ if and only if $y_1 = 0$ and $y_2 = 0 \iff (y_1, y_2) = (0, 0)$.
- (iii) $\mathcal{N}[\alpha(y_1, y_2)] = \mathcal{N}[(\alpha y_1, \alpha y_2)] = \gamma \mathcal{N}_1(\alpha y_1) + \delta \mathcal{N}_2(\alpha y_2) \leq \mathbb{A}_{\mathbb{R}}(\alpha) \cdot \gamma \mathcal{N}_1(\alpha y_1) + \mathbb{A}_{\mathbb{R}}(\alpha) \cdot \delta \mathcal{N}_2(y_2) \leq \mathbb{A}_{\mathbb{R}}(\alpha) [\gamma \mathcal{N}_1(y_1) + \delta \mathcal{N}_2(y_2)] = \mathbb{A}_{\mathbb{R}}(\alpha) \cdot \mathcal{N}[(y_1, y_2)].$
- (iv) $\mathcal{N}[(y_1, y_2) + (g_1, g_2)] = \mathcal{N}[(y_1 + g_1) + (y_2 + g_2)] = \gamma \mathcal{N}_1(y_1 + g_1) + \delta \mathcal{N}_2(y_2 + g_2) \leq \gamma [\sigma \mathcal{N}_1(y_1) + \theta \mathcal{N}_1(g_1)] + \delta [\sigma \mathcal{N}_2(y_2) + \theta \mathcal{N}_2(g_2)]$ where $\gamma + \delta = 1$ for all $\gamma, \delta \in (0, 1)$ and $\sigma + \theta = 1$ for all $\sigma, \theta \in (0, 1)$. Thus, $\mathcal{N}[(y_1, y_2) + (g_1, g_2)] \leq \sigma [\gamma \mathcal{N}_1(y_1) + \delta \mathcal{N}_2(y_2)] + \theta [\gamma \mathcal{N}_1(g_1) + \delta \mathcal{N}_2(g_2)] = \sigma \mathcal{N}[(y_1, y_2)] + \theta \mathcal{N}[(g_1, g_2)].$

Hence, $(\mathbb{V}, \mathcal{N})$ is c-NS.

The proof of the following results can be established by following a similar technique as thaT of the proof of Theorem 3.8.

Corollary 3.9. If $(\mathbb{V}_1, \mathcal{N}_1), (\mathbb{V}_2, \mathcal{N}_2), \ldots, (\mathbb{V}_k, \mathcal{N}_k)$ are c-NS, then $(\mathbb{V}, \mathcal{N})$ is c-NS where $\mathbb{V} = \mathbb{V}_1 \times \mathbb{V}_2 \times \cdots \times \mathbb{V}_k$ and $\mathcal{N}[(y_1, y_2, \ldots, y_k)] = \delta_1 \mathcal{N}_1(y_1) + \delta_2 \mathcal{N}_2(y_2) + \cdots + \delta_k \mathcal{N}_k(y_k)$, for all $(y_1, y_2, \ldots, y_k) \in \mathbb{V}$, where $\delta_1 + \delta_2 + \cdots + \delta_k = 1$, for all $\delta_1, \delta_2, \ldots, \delta_k \in (0, 1)$.

Corollary 3.10. If $(\mathbb{V}, \mathcal{N})$ is c-NS, then $(\mathbb{V}^k, \mathcal{N}_{\mathbb{V}})$ is c-NS where $\mathbb{V}^k = \mathbb{V} \times \mathbb{V} \times \cdots \times \mathbb{V}$ (k-times) and $\mathcal{N}_{\mathbb{V}}[(y_1, y_2, \dots, y_k)] = \delta_1 \mathcal{N}(y_1) + \delta_2 \mathcal{N}(y_2) + \cdots + \delta_k \mathcal{N}(y_k)$ for all $(y_1, y_2, \dots, y_k) \in \mathbb{V}$, where $\delta_1 + \delta_2 + \cdots + \delta_k = 1$, for all $\delta_1, \delta_2, \dots, \delta_k \in (0, 1)$.

Definition 3.11. If $(\mathbb{V}, \mathcal{N})$ is c-NS, then

- (i) For any $y \in \mathbb{V}$, let $c \mathbb{B}(y, \alpha) = \{v \in \mathbb{V} : \mathcal{N}(y v) < \alpha\}$. Then $c \mathbb{B}(y, \alpha)$ is a convex open ball with the center $y \in \mathbb{V}$ and radius $\alpha > 0$.
- (ii) $\mathbb{W} \subseteq \mathbb{V}$ is a convex open set (or simply c-OS) if $c \mathbb{B}(w, \alpha) \subseteq \mathbb{W}$ for any $w \in \mathbb{W}$ and for some $\alpha > 0$.

Theorem 3.12. If $c - \mathbb{B}(y, \alpha)$ is a convex open ball in c-NS $(\mathbb{V}, \mathcal{N})$, then it is a c-OS.

Convex Normed Space

Proof.

Let $c - \mathbb{B}(y, \alpha)$ be a convex open ball, where $y \in \mathbb{V}$ and $\alpha > 0$. If $v \in c - \mathbb{B}(y, \alpha)$, then $\mathcal{N}(y - v) < \alpha$. Put $\beta = \mathcal{N}(y - v)$. Then $\beta < \alpha$ and there exists $\sigma > 0$ such that $(\gamma\beta + \delta\sigma) < \alpha$, where $\gamma, \delta \in (0, 1)$ with $\gamma + \delta = 1$. Consider $c - \mathbb{B}(v, \sigma)$. To prove $c - \mathbb{B}(v, \sigma) \subseteq c - \mathbb{B}(y, \alpha)$, let $z \in c - \mathbb{B}(v, \sigma)$. So, $\mathcal{N}(v-z) < \sigma$. Hence, $\mathcal{N}(y-z) \leq \gamma \mathcal{N}(y-v) + \delta \mathcal{N}(v-z)$, where $\delta \in (0, 1)$ with $\gamma + \delta = 1$. Thus, $\mathcal{N}(y - z) \leq \gamma\beta + \delta\sigma$, so $z \in c - \mathbb{B}(y, \alpha)$. That is, $c - \mathbb{B}(v, \sigma) \subseteq c - \mathbb{B}(y, \alpha)$. Therefore, $c - \mathbb{B}(y, \alpha)$ is a c-OS.

Definition 3.13.

- (i) A subset \mathbb{D} of a c-NS $(\mathbb{V}, \mathcal{N})$ is convex closed if $\mathbb{V} \setminus \mathbb{D}$ is a c-OS.
- (ii) The convex closure \mathbb{E} of a subset of a c-NS $(\mathbb{V}, \mathcal{N})$ is $\mathbb{E} = \bigcap \{\mathbb{D} : \mathbb{D} \text{ is convex closed in } \mathbb{V} \text{ and } \mathbb{E} \subseteq \mathbb{D} \}.$

The proof of the following lemma is clear.

Lemma 3.14. Let $(\mathbb{V}, \mathcal{N})$ be a c-NS.

(i) If $\mathbb{G}_1, \mathbb{G}_2, \dots, \mathbb{G}_k, \dots$ are c-OS in \mathbb{V} , then $\bigcup_{j=1}^{\infty} \mathbb{G}_j$ is c-OS in \mathbb{V} . (ii) If $\mathbb{G}_1, \mathbb{G}_2, \dots, \mathbb{G}_k$ are c-OS in \mathbb{V} , then $\bigcap_{j=1}^k \mathbb{G}_j$ is c-OS in \mathbb{V} .

Definition 3.15. Let $(\mathbb{V}, \mathcal{N})$ be c-NS and let $(y_k) \in \mathbb{V}$. Then (y_k) is convex converges to $y \in \mathbb{V}$ when $k \to \infty$ (or simply $u_k \to u$) if \forall , $c - \mathbb{B}(y, t)$, $\exists M$ such that $y_k \in c - \mathbb{B}(y, t), \forall k \ge M$ where t > 0. This is equivalent to $\forall t > 0, \exists M \in \mathbb{N}$ satisfies $\mathcal{N}(y_k - y) < t, \forall k \ge M$ or $\lim_{k\to\infty} y_k = y$ or $\lim_{n\to\infty} \mathcal{N}(y_k - y) = 0$.

Lemma 3.16. In c-NS $(\mathbb{V}, \mathcal{N})$ if $u_k \to p$ and $u_k \to q$, then p = q.

Proof.

Since $u_k \to p$ and $u_k \to q$, $\mathcal{N}(u_k - p) \to 0$ and $\mathcal{N}(u_k - q) \to 0$ as $k \to \infty$. Thus, $\mathcal{N}(p-q) = \mathcal{N}(p-u_k+u_k-q) \leq \gamma \mathcal{N}(p-u_k) + \delta \mathcal{N}(u_k-q)$ where $\gamma, \delta \in (0,1)$ with $\gamma + \delta = 1$. Therefore, $\mathcal{N}(p-q) \leq \gamma \lim_{k \to \infty} \mathcal{N}(p-u_k) + \delta \lim_{k \to \infty} \mathcal{N}(u_k-q) = \gamma \cdot 0 + \delta \cdot 0 = 0$. As a result, $\mathcal{N}(p-q) = 0$ which implies that p = q.

Definition 3.17. If $(\mathbb{V}, \mathcal{N})$ is c-NS, then

- (i) $\mathbb{Y} \subset \mathbb{V}$ is convex bounded (or simply CB) if $\exists \lambda > 0$, satisfying $\mathcal{N}(p) < \lambda$, $\forall p \in \mathbb{Y}$. Otherwise, \mathbb{Y} is not CB.
- (ii) A sequence (u_k) in a c-NS (U, \mathcal{N}) is CB if $\exists \lambda > 0$, satisfying $\mathcal{N}(u_k) < \lambda$, $\forall k \in \mathbb{N}$. Otherwise, (u_k) is not CB.

Proposition 3.18. In a c-NS $(\mathbb{V}, \mathcal{N})$,

- (i) if \mathbb{G} is a CB subset of \mathbb{V} , then $\lambda \mathbb{G}$ is CB for every $\lambda \neq 0 \in \mathbb{R}$.
- (ii) if (y_k) is a CB sequence in \mathbb{V} , then (αy_k) is CB for every $\alpha \neq 0 \in \mathbb{R}$.
- (iii) If \mathbb{G} and \mathbb{W} are CB subsets of \mathbb{V} , then $\mathbb{G} + \mathbb{W}$ is CB.
- (iv) If (g_k) and (y_k) are two CB sequences in \mathbb{V} , then $(g_k + y_k)$ is CB.

Proof.

- (i) Since \mathbb{G} is a CB subset of \mathbb{V} , there is $\mu > 0$ such that $\mathcal{N}(g) < \mu$ for all $g \in \mathbb{G}$. Thus, $\mathcal{N}(\lambda g) \leq \mathbb{A}_{\mathbb{R}}(\lambda)\mathcal{N}(g) < \mathbb{A}_{\mathbb{R}}(\lambda)\mu < \beta$ with $\beta > 0$. Therefore, $\lambda \mathbb{G}$ is CB.
- (ii) If (y_k) is a CB sequence in \mathbb{V} , then there exists $\mu > 0$ such that $\mathcal{N}(y_k) < \mu$, $\forall k \in \mathbb{N}$. Thus, $\mathcal{N}(\alpha y_k) \leq \mathbb{A}_{\mathbb{R}}(\alpha)\mathcal{N}(y_k) < \mathbb{A}_{\mathbb{R}}(\alpha)\mu < \beta$ with $\beta > 0$. Therefore, (αy_k) is CB.
- (iii) Since \mathbb{G} and \mathbb{W} are CB, $\exists \mu > 0, \epsilon > 0$ satisfying $\mathcal{N}(l) < \mu$ as well as $\mathcal{N}(f) < \epsilon, \forall l \in \mathbb{G}, f \in \mathbb{W}$. Thus, $\mathcal{N}(l+f) \leq \delta \mathcal{N}(l) + \gamma \mathcal{N}(f) < \delta \mu + \gamma \epsilon$ with $\delta + \gamma = 1$. So $\exists \lambda > 0$ satisfying $(\delta \mu + \gamma \epsilon) < \lambda$. Hence, $\mathcal{N}(l+f) < \lambda$, $\forall (l+f) \in (\mathbb{G} + \mathbb{W})$. Thus, $\mathbb{G} + \mathbb{W}$ is CB.
- (iv) Since (g_k) and (y_k) are two CB sequences in $\mathbb{V}, \exists \mu > 0, \epsilon > 0$ satisfying $\mathcal{N}(g_k) < \mu$ as well as $\mathcal{N}(y_k) < \epsilon, \forall k \in \mathbb{N}$. Thus, $\mathcal{N}(g_k + y_k) \leq \delta \mathcal{N}(g_k) + \gamma \mathcal{N}(y_k) < \delta \mu + \gamma \epsilon$ with $\delta + \gamma = 1$. So $\exists \lambda > 0$ satisfying $(\delta \mu + \gamma \epsilon) < \lambda$. Hence, $\mathcal{N}(g_k + y_k) < \lambda, \forall k \in \mathbb{N}$.

Therefore, $(g_k + y_k)$ is CB.

Proposition 3.19. Let (y_k) be a sequence in a c-NS $(\mathbb{V}, \mathcal{N})$. If $y_k \to y \in \mathbb{V}$, then (y_k) is CB.

Proof.

Since $y_k \to y \in \mathbb{V}, \forall \alpha > 0, \exists N \in \mathbb{N}$ satisfying $\mathcal{N}(y_k - y) < \alpha$, for all $k \geq N$. Thus, $\mathcal{N}(y_k) \leq \delta_1 \mathcal{N}(y_k - y) + \delta_2 \mathcal{N}(y) < \delta_1 \alpha + \delta_2 \mathcal{N}(y)$, where $\delta_1 + \delta_2 = 1$. Then, put $\delta_1 \alpha + \delta_2 \mathcal{N}(y) = \beta$ for some $\beta > 0$, which follows that $\mathcal{N}(y_k) < \beta$ for all $k \in \mathbb{N}$. Hence, (y_k) is CB.

Definition 3.20. Let $(\mathbb{V}, \mathcal{N})$ be c-NS, $(y_k) \in \mathbb{V}$, (y_k) is convex Cauchy in \mathbb{V} if $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ satisfying $\mathcal{N}(y_k - y_m) < \epsilon$, $\forall k, m \ge N$.

The proof of the following lemma is immediate.

Lemma 3.21. Let $\mathbb{A}_{\mathbb{R}}[\mathcal{N}(y)] = \mathcal{N}(y)$ for all $y \in \mathbb{V}$. When $(\mathbb{V}, \mathcal{N})$ is c-NS, so $\mathbb{A}_{\mathbb{R}}[\mathcal{N}(y) - \mathcal{N}(g)] \leq \mathcal{N}(y - g)$ for all $y, g \in \mathbb{V}$.

Lemma 3.22. If $(\mathbb{A}, \mathcal{N})$ is c-FN, then $\mathcal{N}(y-g) = \mathcal{N}(g-y), \forall y, g \in \mathbb{V}$.

Proof. $\mathcal{N}(y-g) = \mathcal{N}[(-1)(g-y)] \leq \mathbb{A}_{\mathbb{R}}(-1) \cdot \mathcal{N}(g-y) = \mathbb{A}_{\mathbb{R}}(1) \cdot \mathcal{N}(g-y) = \mathcal{N}(g-y)$ so $\mathcal{N}(u-v) \leq \mathcal{N}(v-u)$. By using a similar technique, $\mathcal{N}(v-u) \leq \mathcal{N}(u-v)$. Thus, $\mathcal{N}(y-g) = \mathcal{N}(g-y), \forall y, g \in \mathbb{V}$.

Definition 3.23. Let $\neq \emptyset$, if $\mathbb{M} : \mathbb{V} \times \mathbb{V} \to [0, \infty)$ satisfies

(i) $\mathbb{M}(y,g) \in [0,\infty)$.

(*ii*)
$$y = g \iff \mathbb{M}(y, g) = 0.$$

(*iii*)
$$\mathbb{M}(y,g) = \mathbb{M}(g,y)$$
.

(iv) $\gamma \mathbb{M}(y,b) + \delta \mathbb{M}(b,g) \ge \mathbb{M}(y,g), \forall 0 < \gamma, \delta < 1 \text{ with } \gamma + \delta = 1 \text{ and } \forall y, g, w \in \mathbb{V}.$

Then (\mathbb{V}, \mathbb{M}) is a convex metric space (or simply c-MS).

The next theorem is easy to prove.

Theorem 3.24. If $(\mathbb{V}, \mathcal{N})$ is c-NS, then $(\mathbb{V}, \mathbb{M}_{\mathcal{N}})$ is c-MS, where $\mathbb{M}_{\mathcal{N}}(y, g) = \mathcal{N}(y-g)$, for all $y, g \in \mathbb{V}$.

Definition 3.25. If $(\mathbb{V}, \mathcal{N})$ is c-NS, then $\mathbb{D} \subseteq \mathbb{V}$ is known as convex dense in \mathbb{V} if whenever $\overline{\mathbb{D}} = \mathbb{V}$.

Theorem 3.26. If $(\mathbb{V}, \mathcal{N})$ is a c-NS, then it is a topological space.

Proof.

If $(\mathbb{V}, \mathcal{N})$ is a c-NS, then put $\mathbb{T}_{\mathcal{N}} = \{\mathbb{W} \subseteq \mathbb{V} : \mathbb{W} \text{ is c-OS in } \mathbb{V}\}.$

- (i) $\emptyset, \mathbb{V} \in \mathbb{T}_{\mathcal{N}}$.
- (ii) If $\{\mathbb{E}_i : i \in I\} \in \mathbb{T}_N$, then $\bigcup_{i \in I} \mathbb{E}_i \in \mathbb{T}_N$ by Lemma 3.14.
- (iii) Let $\mathbb{E}_1, \mathbb{E}_2, \ldots, \mathbb{E}_k \in \mathbb{T}_N$, then $\bigcap_{i=1}^k \mathbb{E}_i \in \mathbb{T}_N$ by Lemma 3.14.

Hence, $(\mathbb{V}, \mathbb{T}_{\mathcal{N}})$ is a topological space.

Definition 3.27. In c-NS, $(\mathbb{V}, \mathcal{N})$ is convex complete if \forall convex Cauchy sequence $(y_k) \in \mathbb{V}$, then $\exists y \in \mathbb{V}$, satisfying $y_k \to y$.

Theorem 3.28. In c-NS, $(\mathbb{V}, \mathcal{N})$, if $y_k \to y \in \mathbb{V}$, then (y_k) is convex Cauchy.

Proof.

Let $(y_k) \in \mathbb{V}$ with $y_k \to y \in \mathbb{V}$. So, $\forall 0 < \sigma < 1$, $\exists N$ satisfying $\mathcal{N}(y_k - y) < \sigma$, $\forall k \geq N$. Thus, for each $m, k \geq N$, $\mathcal{N}(y_k - y_m) \leq \gamma \mathcal{N}(y_k - y) + \delta \mathcal{N}(y - y_m)$, where $\gamma, \delta \in (0, 1)$ with $\gamma + \delta = 1$. Therefore, $\mathcal{N}(y_k - y_m) < \alpha \sigma + \beta \sigma = \sigma$. Hence, (u_k) is a convex fuzzy Cauchy sequence.

Theorem 3.29. In c-NS, $(\mathbb{V}, \mathcal{N})$ if $\mathbb{D} \subset \mathbb{V}$, then the following statements are equivalent

(i) $d \in \overline{\mathbb{D}}$.

(ii) $\exists (d_k) \in \mathbb{D}$ with $d_k \to d$.

Proof.

(ii) \Rightarrow (i): If $(d_k) \in \mathbb{D}$ with $d_k \to d$, then $d \in \mathbb{D}$ or for every $c - \mathbb{B}(d, \lambda)$, $d_k \neq d$, and so d is a limit of \mathbb{D} . Therefore, $d \in \overline{\mathbb{D}}$. (i) \Rightarrow (ii): Let $d \in \overline{\mathbb{D}}$. If $d \in \mathbb{D}$, then $(d, d, \ldots, d, \ldots)$ is the desired sequence. If $d \notin \mathbb{D}$, then $(d_k) \in \mathbb{D}$ since $\mathcal{N}(d_k - d) < \frac{1}{k}$ for each $k = 1, 2, 3, \ldots$ Thus, $c - \mathbb{B}(d, \frac{1}{k})$ contains $d_k \in \mathbb{D}$ and $d_k \to d$.

4 Convex continuous and uniform convex continuous operators

Definition 4.1. If $(V, \mathcal{N}_{\mathbb{V}})$ and $(Y, \mathcal{N}_{\mathbb{Y}})$ are two c-NS, then

- (i) $\mathcal{T}: \mathbb{V} \to \mathbb{Y}$ is convex continuous at $v \in \mathbb{V}$ if $\forall \alpha > 0, \exists \beta > 0$ such that $\mathcal{N}_{\mathbb{V}}(v-y) < \beta$ implies $\mathcal{N}_{\mathbb{Y}}[\mathcal{T}(v) \mathcal{T}(y)] < \alpha, \forall y \in \mathbb{Y}$. If this is true $\forall v \in \mathbb{V}$, then \mathcal{T} is convex continuous on \mathbb{V} .
- (ii) $\mathcal{T} : \mathbb{V} \to \mathbb{Y}$ is strongly convex continuous at $v \in \mathbb{V}$ if $\mathcal{N}_{\mathbb{V}}(v-y) < \mathcal{N}_{\mathbb{Y}}[\mathcal{T}(v) \mathcal{T}(y)], \forall y \in \mathbb{Y}$. If this is true $\forall v \in \mathbb{V}$, then \mathcal{T} is strongly convex continuous on \mathbb{V} .

Convex Normed Space

Proposition 4.2. Every strongly convex continuous operator on \mathbb{V} is convex continuous on \mathbb{V} whenever $(\mathbb{V}, \mathcal{N}_{\mathbb{V}})$ and $(\mathbb{Y}, N_{\mathbb{Y}})$ are two c-NS.

Proof.

If $\mathcal{T} : \mathbb{V} \to \mathbb{Y}$ is a strongly convex continuous operator on \mathbb{V} , then for any $v \in \mathbb{V}$ and any $y \in \mathbb{Y}$, $\mathcal{N}_{\mathbb{V}}(v-y) < \mathcal{N}_{\mathbb{Y}}[\mathcal{T}(v) - \mathcal{T}(y)]$ for . Thus, for every $\alpha > 0$ with $\mathcal{N}_{\mathbb{Y}}[\mathcal{T}(v) - \mathcal{T}(y)] < \alpha$, we can find some $\beta > 0$ satisfying $\mathcal{N}_{\mathbb{V}}(v-y) < \beta < \mathcal{N}_{\mathbb{Y}}[\mathcal{T}(v) - \mathcal{T}(y)]$ for any $y \in \mathbb{Y}$. Hence, $\mathcal{T} : \mathbb{V} \to \mathbb{Y}$ is a convex continuous operator on v since v was an arbitrary point of \mathbb{V} .

The proof of the following theorem is easy.

Theorem 4.3. If $(\mathbb{V}, \mathcal{N}_{\mathbb{V}})$ and $(\mathbb{Y}, \mathcal{N}_{\mathbb{Y}})$ are two c-NS, then the operator \mathcal{T} : $\mathbb{V} \to \mathbb{Y}$ is convex continuous at $y \in \mathbb{V}$ if and only if $\mathcal{T}(y_k) \to \mathcal{T}(y) \in Y$ whenever $y_k \to y \in \mathbb{V}$.

Theorem 4.4. If (y_k) is a sequence in \mathbb{V} with $y_k \to y$, then $\mathcal{N}(y_k) \to \mathcal{N}(y)$ when $(\mathbb{V}, \mathcal{N})$ is c-NS.

Proof.

If $(y_k) \in \mathbb{V}$ with $y_k \to y$, then $\lim_{k\to\infty} \mathcal{N}(y_k - y) = 0$. Thus, $\mathbb{A}_{\mathbb{R}}[\mathcal{N}(y_k) - \mathcal{N}(y)] \leq \mathcal{N}(y_k - y)$. Hence, $\lim_{k\to\infty} \mathbb{A}_{\mathbb{R}}[\mathcal{N}(y_k) - \mathcal{N}(y)] \leq \lim_{k\to\infty} \mathcal{N}(y_k - y) = 0$. Consequently, $\mathcal{N}(y_k) \to \mathcal{N}(y)$.

The proof of the following theorem is easy.

Theorem 4.5. If $(\mathbb{V}, \mathcal{N}_{\mathbb{V}})$ and $(\mathbb{Y}, \mathcal{N}_{\mathbb{Y}})$ are two c-NS, then the following are equivalent:

- (i) The operator $\mathcal{T}: \mathbb{V} \to \mathbb{Y}$ is convex continuous at $v \in \mathbb{V}$.
- (ii) $\mathcal{T}^{-1}(P)$ is c-OS in \mathbb{V} for all c-OS subset \mathbb{P} of \mathbb{Y} .
- (iii) $\mathcal{T}^{-1}(\mathbb{E})$ is convex closed in \mathbb{V} for all convex closed $\mathbb{E} \subset \mathbb{Y}$.

Definition 4.6. If $(\mathbb{V}, \mathcal{N}_{\mathbb{V}})$ and $(\mathbb{Y}, \mathcal{N}_{\mathbb{Y}})$ are c-NS, then

- (i) $\mathcal{T} : \mathbb{V} \to \mathbb{Y}$ is uniformly convex continuous on \mathbb{V} , if $\forall 0 < \alpha, \exists \beta, 0 < \beta$ with $\mathcal{N}_{\mathbb{Y}}[\mathcal{T}(v) - \mathcal{T}(y)] < \alpha$ whenever $\mathcal{N}_{\mathbb{V}}(v - y) < \beta$, for all $v, y \in \mathbb{V}$.
- (ii) $\mathcal{T} : \mathbb{V} \to \mathbb{Y}$ is strong uniformly convex continuous on \mathbb{V} , if $\mathcal{N}_{\mathbb{V}}(v-y) < \mathcal{N}_{\mathbb{Y}}[\mathcal{T}(v) \mathcal{T}(y)]$, for all $v, y \in \mathbb{V}$.

Proposition 4.7. If $(\mathbb{V}, \mathcal{N}_{\mathbb{V}})$ and $(\mathbb{Y}, \mathcal{N}_{\mathbb{Y}})$ are c-NS, then every strongly uniformly convex continuous operator on \mathbb{V} is uniformly convex continuous on \mathbb{V} .

Proof.

If $\mathcal{T}: \mathbb{V} \to \mathbb{Y}$ is strongly uniformly convex continuous on \mathbb{V} , then $\mathcal{N}_{\mathbb{V}}(v-y) < \mathcal{N}_{\mathbb{Y}}[\mathcal{T}(v) - \mathcal{T}(y)]$, for all $v, y \in \mathbb{V}$. Thus, for every $0 < \alpha$, with $\mathcal{N}_{\mathbb{Y}}[\mathcal{T}(v) - \mathcal{T}(y)] < \alpha$, we can find some $0 < \beta$ satisfying $\mathcal{N}_{\mathbb{V}}(v-y) < \beta < \mathcal{N}_{\mathbb{Y}}[\mathcal{T}(v) - \mathcal{T}(y)]$ for any $v, y \in \mathbb{V}$. Hence, $\mathcal{T}: \mathbb{V} \to \mathbb{Y}$ is a uniformly convex continuous operator on \mathbb{V} since v and y were arbitrary points of \mathbb{V} .

Theorem 4.8. Assume $(\mathbb{V}, \mathcal{N}_{\mathbb{V}})$ and $(\mathbb{Y}, \mathcal{N}_{\mathbb{Y}})$ are c-NS and the operator \mathcal{T} : $\mathbb{V} \to \mathbb{Y}$ is uniformly convex continuous on \mathbb{V} . Then $(\mathcal{T}(y_k))$ is a convex Cauchy sequence in \mathbb{Y} if (y_k) is a convex Cauchy sequence in \mathbb{V} .

Proof.

 $\forall \alpha, 0 < \alpha, \exists \beta, 0 < \beta \text{ such that } \mathcal{N}_{\mathbb{V}}(g-y) < \beta \text{ implies } \mathcal{N}_{\mathbb{Y}}[\mathcal{T}(g) - \mathcal{T}(y)] < \alpha, \\ \forall g, y \in \mathbb{V}. \text{ But } (y_k) \text{ is convex Cauchy. Thus, } \forall 0 < \beta, \exists N \in \mathbb{N} \text{ such that } \\ \mathcal{N}_{\mathbb{V}}(y_k - y_m) < \beta, \forall m, k \geq N. \text{ Hence, } \mathcal{N}_{\mathbb{Y}}[\mathcal{T}(y_k) - \mathcal{T}(y_m)] < \alpha, \forall k, m \geq N. \\ \text{Thus, } (\mathcal{T}(y_k)) \text{ is a convex Cauchy sequence in } \mathbb{Y}.$

References

- J. R. Kider, New fuzzy normed spaces, Baghdad Science Journal, 9, (2012), 559–564.
- [2] J. Kider, M. Gheeab, Properties of a General Fuzzy Normed Space, Iraqi Journal of Science, 60, no. 4, (2019), 847–855.
- [3] Z.A. Khudhair, J.R. Kider, Some Properties of Fuzzy Compact Algebra Fuzzy Normed Spaces and Finite Dimensional Algebra Fuzzy Normed Spaces, *IOP Publishing, Journal of Physics: Conference Series*, 1879, (2021), 1–11.
- [4] A.A. Khalafa, J.R. Kider, Linear operator of various types and its basic properties, *International Journal of Nonlinear Analysis and Applications*, **13**, no.1, (2022), 3949–3957.
- [5] Hawraa Yousif Daher, Jehad R. Kider, Some properties of convex fuzzy normed space, *Int. J. Math. Comput. Sci.*, **19**, no. 2, (2024), 345-355.
- [6] J. Kider, The convex fuzzy metric space, AIP Conf. Proc., 3097, (2024), 080016.
- [7] Eidi, E. Hameed, J. Kider, Convex fuzzy distance between two convex fuzzy compact sets, **27**, no. 4, (2024), 953–963.