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Abstract

In this paper, the notion of convex absolute value is introduced

as a generalization of absolute value and then used to introduce the

notion of convex normed space as a generalization of normed space.

1 Introduction

In 2012, Kider [1] introduced a new fuzzy normed space; then, in 2019,
Kider and Gheeab [2] introduced the general fuzzy normed space. In 2021,
Khudhair and Kider [3] introduced the a-fuzzy normed space; then, in 2022,
Khalafa and Kider [4] studied the linear operator of various types on a-fuzzy
normed spaces. In 2024, Daher and Kider [5] introduced the convex fuzzy
normed space, Kider [6] introduced the convex fuzzy metric space and Eidi,
Hameed and Kider [7] introduced the convex fuzzy distance between two
convex fuzzy compact set.
Here we introduce a generalization of normed space.

2 The convex absolute value

Definition 2.1. Suppose that the function AR : R → [0,∞) satisfies
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(i) AR(λ) ∈ [0,∞); AR(λ) = 0 ⇐⇒ λ = 0,

(ii) AR(λ) ·AR(δ) = AR(λδ),

(iii) AR(λ+ δ) ≤ σAR(λ) + µAR(δ),

for all 0 < σ, µ < 1 with σ + µ = 1 and ∀λ, δ ∈ R. then we say that (R,AR)
is a convex absolute value space (or c-AVS).

Example 2.2. For all γ ∈ R, let A
|·|
R
: R → [0,∞) be defined by A

|·|
R
(γ) = 1

|γ|

when γ 6= 0 and A
|·|
R
(0) = 0. Then (R,A

|·|
R
) is c-AVS.

To see this,

(i) 0 ≤ A
|·|
R
(γ) < ∞, and A

|·|
R
(γ) = 0 ⇐⇒ γ = 0.

(ii) A
|·|
R
(γ) ·A|·|

R
(λ) = 1

|γ| ·
1
|λ| =

1
|γ·λ| = A

|·|
R
(γ · λ).

(iii) σA
|·|
R
(γ) + µA

|·|
R
(λ) = σ

|γ| +
µ

|λ| =
σ|λ|+µ|γ|

|γ||λ| ≥ 1
|γ+λ| = A

|·|
R
(γ + λ).

for all σ, µ ∈ (0, 1) with σ + µ = 1 and γ, λ ∈ R.

Theorem 2.3. Every c-AVS is an AVS.

Proof.
If (R,AR) is a c-AVS, define |λ| = AR(λ) for each λ ∈ R. Then (R, | · |)
is an AVS. Conditions (i) and (ii) follow directly. For (iii), since |γ + λ| =
AR(γ + λ) ≤ σAR(γ) + µAR(λ) = σ|γ| + µ|λ| ≤ |γ| + |λ| for all σ, µ ∈ (0, 1)
with σ + µ = 1 and for all γ, λ ∈ R, (R, | · |) is an absolute value space.

Remark 2.4. The converse of Theorem 2.3 is not true in general. For ex-
ample, when (R, | · |) is an AVS, by using σ|γ| + µ|λ| ≤ |γ + λ| ≤ |γ| + |λ|
we see that condition (iii) is not satisfied for all σ, µ ∈ (0, 1) with σ + µ = 1
and for all γ, λ ∈ R. Hence, (R, | · |) is not c-AVS.

Definition 2.5. Let (R,AR) be c-AVS and let {λk}∞k=1 be a sequence in R.
Then {λk}∞k=1 is approaches λ ∈ R as k → ∞ if ∀σ > 0, we can find N ∈ N

satisfying AR(λk − λ) < σ, for all k ≥ N . We write lim(k→∞) λk = λ or
λk → λ or lim(k→∞)AR(λk − λ) = 0.

Theorem 2.6. Assume that (R,AR) is c-AVS and let {λk}
∞
k=1 be a sequence

in R. If λk → λ and λk → γ, then λ = γ.
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Proof.
Since λk → λ and λk → γ, limk→∞AR(λk−λ) = 0 and limk→∞AR(λk−γ) =
0. Thus, AR[λ − γ] = AR[λ − λk + λk − γ] < σAR(λ − λk) + µAR(λk −
γ) for all σ, µ ∈ (0, 1) with σ + µ = 1. Therefore, limk→∞AR(λ − γ) ≤
σ limk→∞AR(λk−λ)+µ limk→∞AR(λk−γ) = 0+0 = 0. Hence, AR(λ−γ) = 0
which implies that λ− γ = 0.

Definition 2.7. If (R,AR) is c-AVS, then define AR(α) = AR(−α) for all
α ∈ R and AR(1) = 1.

Definition 2.8. Let (R,AR) be c-AVS and let {λk}∞k=1 ∈ R. Then {λk}∞k=1 is
a Cauchy sequence if ∀σ > 0, we can find N ∈ N satisfying AR(λk−λj) < σ,
∀k, j ≥ N .

Theorem 2.9. Let (R,AR) be c-AVS and let {λk}∞k=1 be a sequence in R. If
λk → λ, then it is Cauchy.

Proof.
Since λk → λ so ∀δ > 0, ∃N ∈ N satisfying AR(λk − λ) < δ, ∀k ≥ N . Thus,
∀n,m ≥ N AR(λk−λm) = AR(λk−λ+λ−λm) ≤ µAR(λk−λ)+σAR(λ−λm)
for all µ, σ ∈ (0, 1) with σ + µ = 1. Therefore, AR(λk − λm) ≤ µδ + σδ =
(µ+ σ)δ = δ. Consequently, {λk}∞k=1 is Cauchy.

Theorem 2.10. Let (R,AR) be c-AVS and let {λk}∞k=1 be a sequence in R.
If λk → λ, then all (λkn) ⊆ {λk}

∞
k=1 satisfy λkn → λ.

Proof.
λk → λ implies limk→∞AR(λk−λ) = 0. Also, {λk}∞k=1 is a Cauchy sequence,
so AR(λn − λm) → 0, when n → ∞ and m → ∞. Thus, AR[λkn − λ] =
AR[λkn −λk +λk−λ] ≤ σAR[λkn −λk]+µAR[λk −λ] for all µ, σ ∈ (0, 1) with
σ + µ = 1. Therefore, limk→∞AR[λkn − λ] ≤ σ · 0 + µ · 0 = 0. Consequently,
λkn → λ.

3 The Convex Normed Space

Definition 3.1. Let V be an R-space over R, (R,AR) is c-AVS and let N :
V → [0,∞) be a function. If N satisfies

(i) 0 ≤ N (y) < ∞,

(ii) N (y) = 0 if and only if y = 0,
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(iii) N (λy) = AR(λ)N (y), ∀λ ∈ R. λ 6= 0,

(iv) N (y + g) ≤ γN (y) + δN (g). where γ, δ ∈ (0, 1) with γ + δ = 1, for all
y, g ∈ V,

then (V,N ) is a convex normed space (or c-NS).

Example 3.2. Define N ‖·‖ : V → [0,∞) by: N ‖·‖(y) = 1
‖y‖ if y 6= 0 and

N ‖·‖(0) = 0, ∀y ∈ V. Then (V,N ‖·‖) is a c-NS when (V, ‖ · ‖) is a normed
space. This space is called the c-NS induced by ‖ · ‖.

Proof.

(i) N ‖·‖(y) ∈ [0,∞).

(ii) N ‖·‖(y) = 0 ⇐⇒ y = 0.

(iii) AR(α) · N ‖·‖(y) = 1
|α|

· 1
‖y‖

= 1
‖αy‖

= N ‖·‖(αy).

(iv) γN ‖·‖(y) + δN ‖·‖(g) = γ

‖y‖
+ δ

‖g‖
= γ‖g‖+δ‖y‖

‖y‖‖g‖
≥ 1

‖y+g‖
= N ‖·‖(y + g).

Hence, (V,N ‖·‖) is a c-NS, for any γ, δ ∈ (0, 1) with γ + δ = 1.

Remark 3.3.

(i) If t, s ∈ [0,∞), then (αt + (1 − α)s) ∈ [0,∞) for any α ∈ (0, 1), or
(γt + δs) ∈ [0,∞) for any γ, δ ∈ (0, 1) with γ + δ = 1. In general, if
t1, t2, . . . , tk ∈ [0,∞), then (α1t1 + α2t2 + · · ·+ αktk) ∈ [0,∞) for any
α1, α2, . . . , αk ∈ (0, 1) with α1 + α2 + · · ·+ αk = 1.

(ii) N (w1+w2+ · · ·+wk) ≤ α1N (w1)+α2N (w2)+ · · ·+αkN (wk), for all
w1, w2, . . . , wk ∈ U and α1, α2, . . . , αk ∈ (0, 1) with α1+α2+· · ·+αk = 1.

Proof.
The proof is elementary and so it is omitted.

Theorem 3.4. If N : R → [0,∞) defined by; N (t) = AR(t), ∀t ∈ R, then
(R,N ) is c-NS.

Proof.

(i) N (t) ∈ [0,∞), ∀t ∈ R,

(ii) N (t) = 0 ⇐⇒ if AR(t) = 0 ⇐⇒ t = 0,
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(iii) N (t, s) = AR(t, s) = AR(t) · AR(s) = N (t) · N (s), ∀t, s ∈ R with t 6=
0, s 6= 0,

(iv) N (t+ s) = AR(t+ s) ≤ γAR(t) + δAR(s) = γN (t) + δN (s),

for any γ, δ ∈ (0, 1) with γ + δ = 1. Hence, (R,N ) is c-NS.

Example 3.5. If V = C[d, b], define N (l) = maxα∈[d,b]AR[l(α)], ∀l ∈ V.
Then (V,N ) is c-NS.

Proof.

(i) N (l) ∈ [0,∞), ∀l ∈ V.

(ii) N (l) = 0 ⇐⇒ maxα∈[a,b]AR[l(α)] = 0 ⇐⇒ AR[l(α)] = 0, ∀α ∈
[d, b] ⇐⇒ l(α) = 0, ∀α ∈ [d, b] ⇐⇒ l = 0.

(iii) N (tl) = maxα∈[d,b]AR[tl(α)] = AR(t) · maxα∈[d,b] AR[l(α)] = AR(t) ·
N (l), ∀t ∈ R with t 6= 0.

(iv) N (l + y) = maxα∈[d,b]AR[(l + y)(α)] = maxα∈[d,b] AR[(l(α) + y(α))] ≤
maxα∈[d,b] γAR[l(α)]+maxα∈[d,b] δAR[y(α)] for any γ, δ ∈ (0, 1) with γ+
δ = 1. Thus, N (l + y) ≤ γmaxα∈[a,b] AR[l(α)] + δmaxα∈[a,b] AR[y(α)] =
γN (l) + δN (y).

Therefore, (V,N ) is c-NS.

Theorem 3.6. Every c-NS is a NS.

Proof.
If (V,N ) is a c-NS, define ‖y‖ = N (y) for all y ∈ V. Then conditions (i),
(ii), and (iii) are simple.

(iv) ‖y+g‖ = N (y+g) ≤ γN (y)+ δN (g) = γ‖y‖+ δ‖g‖ ≤ ‖y‖+‖g‖ for
all γ, δ ∈ (0, 1) with γ+δ = 1 and for all u, v ∈ V. Thus, ‖y+g‖ ≤ ‖y‖+‖g‖.
Hence, (V, ‖ · ‖) is a normed space.

Remark 3.7. The converse of Theorem 3.6 is not true in general. For ex-
ample, if (V, ‖ · ‖) is a normed space, then since γ‖y‖ + δ‖g‖ ≤ ‖y + g‖ ≤
‖y‖ + ‖g‖, condition (iv) is not satisfied, since ‖y + g‖ ≥ γ‖y‖ + δ‖g‖, for
all γ, δ ∈ (0, 1) with γ + δ = 1 and for all y, g ∈ V. Hence, (V, ‖ · ‖) is not
c-NS.

Theorem 3.8. If (V1,N1) and (V2,N2) are two c-NS, then (V,N ) is c-NS
where V = V1 ×V2 and N [(y1, y2)] = γN1(y1) + δN2(y2) for all (y1, y2) ∈ V,
for all γ, δ ∈ (0, 1) with γ + δ = 1.
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Proof.

(i) Since 0 ≤ N1(y1) < ∞ and 0 ≤ N2(y2) < ∞, 0 ≤ N [(y1, y2)] < ∞

(ii) N [(y1, y2)] = 0 if and only if γN1(y1) + δN2(y2) = 0 if and only if
N1(y1) = 0 and N2(y2) = 0 if and only if y1 = 0 and y2 = 0 ⇐⇒
(y1, y2) = (0, 0).

(iii) N [α(y1, y2)] = N [(αy1, αy2)] = γN1(αy1)+δN2(αy2)≤ AR(α)·γN1(αy1)+
AR(α) · δN2(y2) ≤ AR(α)[γN1(y1) + δN2(y2)] = AR(α) · N [(y1, y2)].

(iv) N [(y1, y2) + (g1, g2)] = N [(y1 + g1) + (y2 + g2)] = γN1(y1 + g1) +
δN2(y2 + g2) ≤ γ[σN1(y1) + θN1(g1)] + δ[σN2(y2) + θN2(g2)] where
γ + δ = 1 for all γ, δ ∈ (0, 1) and σ + θ = 1 for all σ, θ ∈ (0, 1). Thus,
N [(y1, y2) + (g1, g2)] ≤ σ[γN1(y1) + δN2(y2)] + θ[γN1(g1) + δN2(g2)]
= σN [(y1, y2)] + θN [(g1, g2)].

Hence, (V,N ) is c-NS.

The proof of the following results can be established by following a simi-
lar technique as thaT of the proof of Theorem 3.8.

Corollary 3.9. If (V1,N1), (V2,N2), . . . , (Vk,Nk) are c-NS, then (V,N ) is
c-NS where V = V1 × V2 × · · · × Vk and N [(y1, y2, . . . , yk)] = δ1N1(y1) +
δ2N2(y2)+· · ·+δkNk(yk), for all (y1, y2, . . . , yk) ∈ V, where δ1+δ2+· · ·+δk =
1, for all δ1, δ2, . . . , δk ∈ (0, 1).

Corollary 3.10. If (V,N ) is c-NS, then (Vk,NV) is c-NS where Vk = V×
V × · · · × V (k-times) and NV[(y1, y2, . . . , yk)] = δ1N (y1) + δ2N (y2) + · · ·+
δkN (yk) for all (y1, y2, . . . , yk) ∈ V, where δ1 + δ2 + · · · + δk = 1, for all
δ1, δ2, . . . , δk ∈ (0, 1).

Definition 3.11. If (V,N ) is c-NS, then

(i) For any y ∈ V, let c − B(y, α) = {v ∈ V : N (y − v) < α}. Then
c − B(y, α) is a convex open ball with the center y ∈ V and radius
α > 0.

(ii) W ⊆ V is a convex open set (or simply c-OS) if c − B(w, α) ⊆ W for
any w ∈ W and for some α > 0.

Theorem 3.12. If c−B(y, α) is a convex open ball in c-NS (V,N ), then it
is a c-OS.
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Proof.
Let c − B(y, α) be a convex open ball, where y ∈ V and α > 0. If v ∈
c − B(y, α), then N (y − v) < α. Put β = N (y − v). Then β < α and there
exists σ > 0 such that (γβ + δσ) < α, where γ, δ ∈ (0, 1) with γ + δ = 1.
Consider c− B(v, σ). To prove c− B(v, σ) ⊆ c− B(y, α), let z ∈ c− B(v, σ).
So, N (v−z) < σ. Hence, N (y−z) ≤ γN (y−v)+δN (v−z), where δ ∈ (0, 1)
with γ + δ = 1. Thus, N (y − z) ≤ γβ + δσ, so z ∈ c − B(y, α). That is,
c− B(v, σ) ⊆ c− B(y, α). Therefore, c− B(y, α) is a c-OS.

Definition 3.13.

(i) A subset D of a c-NS (V,N ) is convex closed if V \ D is a c-OS.

(ii) The convex closure Ē of a subset of a c-NS (V,N ) is Ē =
⋂
{D :

D is convex closed in V and E ⊆ D}.

The proof of the following lemma is clear.

Lemma 3.14. Let (V,N ) be a c-NS.
(i) If G1,G2, . . . ,Gk, . . . are c-OS in V, then

⋃∞
j=1Gj is c-OS in V.

(ii) If G1,G2, . . . ,Gk are c-OS in V, then
⋂k

j=1Gj is c-OS in V.

Definition 3.15. Let (V,N ) be c-NS and let (yk) ∈ V. Then (yk) is convex
converges to y ∈ V when k → ∞ (or simply uk → u) if ∀, c − B(y, t),
∃M such that yk ∈ c − B(y, t), ∀k ≥ M where t > 0. This is equivalent to
∀t > 0, ∃M ∈ N satisfies N (yk − y) < t, ∀k ≥ M or limk→∞ yk = y or
limn→∞N (yk − y) = 0.

Lemma 3.16. In c-NS (V,N ) if uk → p and uk → q, then p = q.

Proof.
Since uk → p and uk → q, N (uk − p) → 0 and N (uk − q) → 0 as k → ∞.
Thus, N (p − q) = N (p − uk + uk − q) ≤ γN (p − uk) + δN (uk − q) where
γ, δ ∈ (0, 1) with γ + δ = 1. Therefore, N (p − q) ≤ γ limk→∞N (p − uk) +
δ limk→∞N (uk−q) = γ ·0+δ ·0 = 0. As a result, N (p−q) = 0 which implies
that p = q.

Definition 3.17. If (V,N ) is c-NS, then

(i) Y ⊂ V is convex bounded (or simply CB) if ∃λ > 0, satisfying N (p) <
λ, ∀p ∈ Y. Otherwise, Y is not CB.

(ii) A sequence (uk) in a c-NS (U,N ) is CB if ∃λ > 0, satisfying N (uk) <
λ, ∀k ∈ N. Otherwise, (uk) is not CB.
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Proposition 3.18. In a c-NS (V,N ),

(i) if G is a CB subset of V, then λG is CB for every λ 6= 0 ∈ R.

(ii) if (yk) is a CB sequence in V, then (αyk) is CB for every α 6= 0 ∈ R.

(iii) If G and W are CB subsets of V, then G+W is CB.

(iv) If (gk) and (yk) are two CB sequences in V, then (gk + yk) is CB.

Proof.

(i) Since G is a CB subset of V, there is µ > 0 such that N (g) < µ for
all g ∈ G. Thus, N (λg) ≤ AR(λ)N (g) < AR(λ)µ < β with β > 0.
Therefore, λG is CB.

(ii) If (yk) is a CB sequence in V, then there exists µ > 0 such that N (yk) <
µ, ∀k ∈ N. Thus, N (αyk) ≤ AR(α)N (yk) < AR(α)µ < β with β >
0. Therefore, (αyk) is CB.

(iii) Since G and W are CB, ∃µ > 0, ǫ > 0 satisfying N (l) < µ as well as
N (f) < ǫ, ∀l ∈ G, f ∈ W. Thus, N (l+f) ≤ δN (l)+γN (f) < δµ+γǫ
with δ+γ = 1. So ∃λ > 0 satisfying (δµ+γǫ) < λ. Hence, N (l+f) < λ,
∀(l + f) ∈ (G+W). Thus, G+W is CB.

(iv) Since (gk) and (yk) are two CB sequences in V, ∃µ > 0, ǫ > 0 satisfying
N (gk) < µ as well as N (yk) < ǫ, ∀k ∈ N. Thus, N (gk + yk) ≤
δN (gk) + γN (yk) < δµ + γǫ with δ + γ = 1. So ∃λ > 0 satisfying
(δµ+ γǫ) < λ. Hence, N (gk + yk) < λ, ∀k ∈ N.

Therefore, (gk + yk) is CB.

Proposition 3.19. Let (yk) be a sequence in a c-NS (V,N ). If yk → y ∈ V,
then (yk) is CB.

Proof.
Since yk → y ∈ V, ∀α > 0, ∃N ∈ N satisfying N (yk − y) < α, for all k ≥ N .
Thus, N (yk) ≤ δ1N (yk − y) + δ2N (y) < δ1α + δ2N (y),where δ1 + δ2 = 1.
Then, put δ1α + δ2N (y) = β for some β > 0, which follows that N (yk) < β
for all k ∈ N. Hence, (yk) is CB.

Definition 3.20. Let (V,N ) be c-NS, (yk) ∈ V, (yk) is convex Cauchy in V

if ∀ ǫ > 0, ∃N ∈ N satisfying N (yk − ym) < ǫ, ∀k,m ≥ N .
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The proof of the following lemma is immediate.

Lemma 3.21. Let AR[N (y)] = N (y) for all y ∈ V. When (V,N ) is c-NS,
so AR[N (y)−N (g)] ≤ N (y − g) for all y, g ∈ V.

Lemma 3.22. If (A,N ) is c-FN, then N (y − g) = N (g − y), ∀y, g ∈ V.

Proof.
N (y−g) = N [(−1)(g−y)] ≤ AR(−1)·N (g−y) = AR(1)·N (g−y) = N (g−y)
so N (u−v) ≤ N (v−u). By using a similar technique, N (v−u) ≤ N (u−v).
Thus, N (y − g) = N (g − y), ∀y, g ∈ V.

Definition 3.23. Let 6= ∅, if M : V× V → [0,∞) satisfies

(i) M(y, g) ∈ [0,∞).

(ii) y = g ⇐⇒ M(y, g) = 0.

(iii) M(y, g) = M(g, y).

(iv) γM(y, b) + δM(b, g) ≥ M(y, g), ∀0 < γ, δ < 1 with γ + δ = 1 and
∀y, g, w ∈ V.

Then (V,M) is a convex metric space (or simply c-MS).

The next theorem is easy to prove.

Theorem 3.24. If (V,N ) is c-NS, then (V,MN ) is c-MS, where MN (y, g) =
N (y − g), for all y, g ∈ V.

Definition 3.25. If (V,N ) is c-NS, then D ⊆ V is known as convex dense
in V if whenever D = V.

Theorem 3.26. If (V,N ) is a c-NS, then it is a topological space.

Proof.
If (V,N ) is a c-NS, then put TN = {W ⊆ V : W is c-OS in V}.

(i) ∅,V ∈ TN .

(ii) If {Ei : i ∈ I} ∈ TN , then
⋃

i∈I Ei ∈ TN by Lemma 3.14.

(iii) Let E1,E2, . . . ,Ek ∈ TN , then
⋂k

i=1 Ei ∈ TN by Lemma 3.14.
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Hence, (V,TN ) is a topological space.

Definition 3.27. In c-NS, (V,N ) is convex complete if ∀ convex Cauchy
sequence (yk) ∈ V, then ∃y ∈ V, satisfying yk → y.

Theorem 3.28. In c-NS, (V,N ), if yk → y ∈ V, then (yk) is convex
Cauchy.

Proof.
Let (yk) ∈ V with yk → y ∈ V. So, ∀ 0 < σ < 1, ∃N satisfying N (yk−y) < σ,
∀k ≥ N . Thus, for each m, k ≥ N , N (yk − ym) ≤ γN (yk − y)+ δN (y− ym),
where γ, δ ∈ (0, 1) with γ + δ = 1. Therefore, N (yk − ym) < ασ + βσ = σ.
Hence, (uk) is a convex fuzzy Cauchy sequence.

Theorem 3.29. In c-NS, (V,N ) if D ⊂ V, then the following statements
are equivalent

(i) d ∈ D.

(ii) ∃(dk) ∈ D with dk → d.

Proof.
(ii) ⇒ (i): If (dk) ∈ D with dk → d, then d ∈ D or for every c − B(d, λ),
dk 6= d, and so d is a limit of D. Therefore, d ∈ D.
(i) ⇒ (ii): Let d ∈ D. If d ∈ D, then (d, d, . . . , d, . . . ) is the desired sequence.
If d /∈ D, then (dk) ∈ D since N (dk − d) < 1

k
for each k = 1, 2, 3, . . . . Thus,

c− B(d, 1
k
) contains dk ∈ D and dk → d.

4 Convex continuous and uniform convex con-

tinuous operators

Definition 4.1. If (V,NV) and (Y,NY) are two c-NS, then

(i) T : V → Y is convex continuous at v ∈ V if ∀α > 0, ∃ β > 0 such that
NV(v − y) < β implies NY[T (v) − T (y)] < α, ∀ y ∈ Y. If this is true
∀ v ∈ V, then T is convex continuous on V.

(ii) T : V → Y is strongly convex continuous at v ∈ V if NV(v − y) <
NY[T (v) − T (y)], ∀ y ∈ Y. If this is true ∀ v ∈ V, then T is strongly
convex continuous on V.
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Proposition 4.2. Every strongly convex continuous operator on V is convex
continuous on V whenever (V,NV) and (Y, NY) are two c-NS.

Proof.
If T : V → Y is a strongly convex continuous operator on V, then for any
v ∈ V and any y ∈ Y, NV(v − y) < NY[T (v) − T (y)] for . Thus, for ev-
ery α > 0 with NY[T (v) − T (y)] < α, we can find some β > 0 satisfying
NV(v − y) < β < NY[T (v) − T (y)] for any y ∈ Y. Hence, T : V → Y is a
convex continuous operator on v since v was an arbitrary point of V.

The proof of the following theorem is easy.

Theorem 4.3. If (V,NV) and (Y,NY) are two c-NS, then the operator T :
V → Y is convex continuous at y ∈ V if and only if T (yk) → T (y) ∈ Y
whenever yk → y ∈ V.

Theorem 4.4. If (yk) is a sequence in V with yk → y, then N (yk) → N (y)
when (V,N ) is c-NS.

Proof.
If (yk) ∈ V with yk → y, then limk→∞N (yk − y) = 0. Thus, AR[N (yk) −
N (y)] ≤ N (yk−y). Hence, limk→∞AR[N (yk)−N (y)] ≤ limk→∞N (yk−y) =
0. Consequently, N (yk) → N (y).
The proof of the following theorem is easy.

Theorem 4.5. If (V,NV) and (Y,NY) are two c-NS, then the following are
equivalent:

(i) The operator T : V → Y is convex continuous at v ∈ V.

(ii) T −1(P ) is c-OS in V for all c-OS subset P of Y.

(iii) T −1(E) is convex closed in V for all convex closed E ⊂ Y.

Definition 4.6. If (V,NV) and (Y,NY) are c-NS, then

(i) T : V → Y is uniformly convex continuous on V, if ∀ 0 < α, ∃ β, 0 < β
with NY[T (v)− T (y)] < α whenever NV(v − y) < β, for all v, y ∈ V.

(ii) T : V → Y is strong uniformly convex continuous on V, if NV(v−y) <
NY[T (v)− T (y)], for all v, y ∈ V.

Proposition 4.7. If (V,NV) and (Y,NY) are c-NS, then every strongly uni-
formly convex continuous operator on V is uniformly convex continuous on
V.
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Proof.
If T : V → Y is strongly uniformly convex continuous on V, then NV(v−y) <
NY[T (v) − T (y)], for all v, y ∈ V. Thus, for every 0 < α, with NY[T (v) −
T (y)] < α, we can find some 0 < β satisfying NV(v − y) < β < NY[T (v)−
T (y)] for any v, y ∈ V. Hence, T : V → Y is a uniformly convex continuous
operator on V since v and y were arbitrary points of V.

Theorem 4.8. Assume (V,NV) and (Y,NY) are c-NS and the operator T :
V → Y is uniformly convex continuous on V. Then (T (yk)) is a convex
Cauchy sequence in Y if (yk) is a convex Cauchy sequence in V.

Proof.
∀α, 0 < α, ∃ β, 0 < β such that NV(g−y) < β implies NY[T (g)−T (y)] < α,
∀g, y ∈ V. But (yk) is convex Cauchy. Thus, ∀0 < β, ∃N ∈ N such that
NV(yk − ym) < β, ∀m, k ≥ N . Hence, NY[T (yk) − T (ym)] < α, ∀k,m ≥ N .
Thus, (T (yk)) is a convex Cauchy sequence in Y.
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