Fixed point theorem using contraction in complete multiplicative metric space

R. D. Mohanraj, C. Rajesh

Department of Mathematics
Faculty of Engineering and Technology
SRM Institute of Science and Technology, Vadapalani Campus
No.1, Jawaharlal Nehru Salai, Vadapalani,
Chennai-600026, Tamilnadu, India

email: mr3409@srmist.edu.in, rajeshc@srmist.edu.in

(Received March 8, 2024, Revised July 9, 2024,
Accepted July 19, 2024, Published July 21, 2024)

Abstract

In our paper, we prove a fixed point theorem which extends results of Gupta and Garg and broadens a number of findings in the setting of multiplicative metric space.

1 Introduction

Fixed point theory holds importance across a range of disciplines including topology, mathematical economics, game theory, and approximation theory. A metric space is generally a non-empty abstract space with a distance function. In 1922, Banach established a standard result named ‘Banach Contraction Principle’, which is broadly regarded as the main source of “Metric Fixed Point Theory”. Then, several fixed point theorems were proved using this contraction principle. A new type of metric space called Multiplicative Metric Space (MMS) was coined by Bashirov et al. [1]. Various topological conditions in a multiplicative metric space were proved in [2]. The presented theorem extends the research results of Gupta and Garg [3] and broadens a number of findings in the setting of multiplicative metric space.

Key words and phrases: Fixed point, contraction mapping, complete multiplicative metric space.

AMS (MOS) Subject Classifications: 47H10, 54H25.

The corresponding author is C. Rajesh.

ISSN 1814-0432, 2025, http://ijmcs.future-in-tech.net
number of well-known findings in the setting of multiplicative metric space.
Now, we recall the definition and topological conditions of MMS, which are required to prove our main result.

2 Preliminaries

Definition 2.1. [1] Let Ξ be a non-empty set. Then a mapping $\varphi : \Xi \times \Xi \to [1, \infty)$ is called as multiplicative metric if the following conditions hold:

(i) $\varphi(\kappa, \omega) \geq 1$ for all $\kappa, \omega \in \Xi$.

(ii) $\varphi(\kappa, \omega) = \varphi(\omega, \kappa)$ for all $\kappa, \omega \in \Xi$.

(iii) $\varphi(\kappa, \gamma) \leq \varphi(\kappa, \omega) \cdot \varphi(\omega, \gamma)$ for all $\kappa, \omega, \gamma \in \Xi$.

Thus, (Ξ, φ) is called a multiplicative metric space (MMS).

Lemma 2.2. [2] Let (Ξ, φ) be MMS. If $\{\zeta_n\}$ is a sequence in Ξ with $\kappa \in \Xi$, then $\{\zeta_n\} \to \kappa \ (n \to \infty) \Leftrightarrow \varphi(\zeta_n, \kappa) \to 1$ as $n \to \infty$.

Lemma 2.3. [2] Suppose $\{\zeta_n\}$ is a sequence in MMS (Ξ, φ) with $\zeta \in \Xi$. We call $\{\zeta_n\}$ a multiplicative Cauchy sequence if and only if $\varphi(\zeta_n, \zeta_m) \to 1$ as $n, m \to \infty$.

Definition 2.4. [2] Let (Ξ, φ) be MMS. We say (Ξ, φ) is complete if every multiplicative Cauchy sequence in it is multiplicative convergent to $\zeta \in \Xi$.

3 Main results

Now, we prove our main theorem in which we apply the rational type contraction mapping in a complete MMS.

Theorem 3.1. Let (Ξ, φ) be a complete MMS. Suppose $M : \Xi \to \Xi$ is continuous self mapping such that

\[
\varphi(M\zeta, M\tau) \leq [\varphi(\zeta, \tau)]^{\beta_1} \cdot [\varphi(\zeta, M\zeta) \cdot \varphi(\tau, M\tau)]^{\beta_2} \cdot [\varphi(\zeta, M\tau) \cdot \varphi(\tau, M\zeta)]^{\beta_3} \\
\cdot \left[\frac{\varphi(\zeta, M\tau)}{\varphi(\tau, M\tau)}\right]^{\beta_4} \cdot \left[\frac{\varphi(\zeta, M\tau)}{\varphi(\tau, \zeta)}\right]^{\beta_5}
\]

(3.1)

Also, $\forall \zeta, \tau \in \Xi, \zeta \neq \tau, \beta_1, \beta_2, \beta_3, \beta_4, \beta_5 \in [0, 1)$ such that $\beta_1 + 2\beta_2 + 2\beta_3 + \beta_4 + \beta_5 < 1$ and $\beta_1 + 2\beta_3 < 1$, M has a unique fixed point in Ξ.
Fixed point theorem using contraction...

Proof. Let \(\{ \zeta_n \} \) be a sequence in \(\Xi \) which, for \(\zeta_0 \in \Xi \), is defined as
\(M\zeta_n = \zeta_{n+1}, \forall n = 0, 1, 2, \ldots \)

\[
\varphi(\zeta_n, \zeta_{n+1}) = \varphi(M\zeta_{n-1}, M\zeta_n)
\]

\[
\leq [\varphi(\zeta_{n-1}, \zeta_n)]^{\beta_1} \cdot [\varphi(\zeta_{n-1}, M\zeta_n) \cdot \varphi(\zeta_n, M\zeta_n)]^{\beta_2} \cdot [\varphi(\zeta_{n-1}, M\zeta_n) \cdot \varphi(\zeta_n, M\zeta_{n-1})]^{\beta_3}
\]

\[
\leq [\varphi(\zeta_{n-1}, \zeta_n)]^{\beta_1} \cdot [\varphi(\zeta_{n-1}, \zeta_n) \cdot \varphi(\zeta_n, \zeta_{n+1})]^{\beta_2} \cdot [\varphi(\zeta_{n-1}, \zeta_n) \cdot \varphi(\zeta_n, \zeta_{n+1})]^{\beta_3}
\]

By continuing the process, we get
\[
\varphi(\zeta_{n-1}, \zeta_n) \leq [\varphi(\zeta_{n-2}, \zeta_n)]^{\beta_1} \cdot [\varphi(\zeta_{n-2}, \zeta_n) \cdot \varphi(\zeta_n, \zeta_{n+1})]^{\beta_2} \cdot [\varphi(\zeta_{n-2}, \zeta_n) \cdot \varphi(\zeta_n, \zeta_{n+1})]^{\beta_3}
\]

\[
[\varphi(\zeta_n, \zeta_{n+1})]^{(1-\beta_2-\beta_3-\beta_4)} \leq [\varphi(\zeta_{n-2}, \zeta_n)]^{(\beta_1+\beta_2+\beta_3+\beta_4)}
\]

Since \(\beta_1+2\beta_2+2\beta_3+\beta_4+\beta_5 < 1 \),
\[
[\varphi(\zeta_n, \zeta_{n+1})] \leq [\varphi(\zeta_{n-2}, \zeta_n)]^{k} \leq [\varphi(\zeta_{n-2}, \zeta_n)]^{k^2}.
\]

By continuing the process, we get \(\varphi(\zeta_n, \zeta_{n+1}) \leq [\varphi(\zeta_0, \zeta_1)]^{k^n} \).

Since \(0 \leq k < 1 \), \(k^n \to 0 \) as \(n \to \infty \). Thus, \(\varphi(\zeta_n, \zeta_{n+1}) \to 1 \) and so \(\{ \zeta_n \} \) is a multiplicative Cauchy sequence.

By definition, \(\exists \) a point \(\zeta^* \in X \) such that \(\{ \zeta_n \} \to \zeta^* \).

As \(M \) is continuous, \(M(\zeta^*) = \lim_{n \to \infty} M(\zeta_n) = \lim_{n \to \infty} \zeta_{n+1} = \zeta^* \).

Hence, \(M \) has a fixed point. In order to demonstrate the uniqueness of \(M \), suppose \(\tau^* \) is another fixed point of \(M \). Then, by (3.1),
\[
\varphi(\zeta^*, \tau^*) = \varphi(M\zeta^*, M\tau^*)
\]

\[
\varphi(\zeta^*, \tau^*) \leq [\varphi(\zeta^*, \tau^*)]^{\beta_1} \cdot [\varphi(\zeta^*, M\zeta^*) \cdot \varphi(\tau^*, M\tau^*)]^{\beta_2} \cdot [\varphi(\zeta^*, M\tau^*) \cdot \varphi(\tau^*, M\zeta^*)]^{\beta_3}
\]

\[
\cdot \left[\frac{\varphi(\zeta^*, M\zeta^*)}{\varphi(\tau^*, M\tau^*)} \right]^{\beta_4} \cdot \left[\frac{\varphi(\zeta^*, M\tau^*)}{\varphi(\zeta^*, \tau^*)} \right]^{\beta_5}
\]
Since ζ^* and τ^* are fixed points,
\[
\varphi(\zeta^*, \tau^*) \leq \left[\varphi(\zeta^*, \zeta^*)\right]^{\beta_1} \cdot \left[\varphi(\zeta^*, \tau^*)\varphi(\tau^*, \zeta^*)\right]^{\beta_2} \cdot \left[\varphi(\zeta^*, \tau^*)\varphi(\tau^*, \zeta^*)\right]^{\beta_3}
\]
\[
\leq \left[\varphi(\zeta^*, \zeta^*)\right]^{\beta_1} \cdot \left[\varphi(\zeta^*, \tau^*)\right]^{\beta_2} \cdot \left[\varphi(\zeta^*, \tau^*)\right]^{\beta_3}
\]
\[
\varphi(\zeta^*, \tau^*) \leq \left[\varphi(\zeta^*, \zeta^*)\right]^{\beta_1+2\beta_3} \implies \left[\varphi(\zeta^*, \tau^*)\right]^{(1-\beta_1-2\beta_3)} \leq 1,
\]
a contradiction. Thus $\varphi(\zeta^*, \tau^*) = 1$. As a result, $\zeta^* = \tau^*$.

\[\Box\]

Theorem 3.2. Let (Ξ, φ) be a complete MMS. Suppose $M : \Xi \to \Xi$ is a continuous self mapping such that
\[
\varphi(M\zeta, M\tau) \leq \left[\varphi(\zeta, \tau)\right]^{\beta_1} \cdot \left[\varphi(\zeta, M\zeta), \varphi(\tau, M\tau)\right]^{\beta_2} \cdot \left[\varphi(\zeta, \tau), \varphi(\tau, M\zeta)\right]^{\beta_3}
\]
\[
= \left[\varphi(\zeta, \tau)\right]^{\beta_1} \cdot \left(\varphi(\zeta, M\zeta), \varphi(\tau, M\tau)\right)\left[\varphi(\zeta, \tau), \varphi(\tau, M\zeta)\right]^{\beta_3}
\]
(3.2)

Also, $\forall \zeta, \tau \in \Xi, \zeta \neq \tau, \beta_1, \beta_2, \beta_3 \in [0, 1)$ such that $\beta_1 + 2\beta_2 + 4\beta_3 < 1$ and $\beta_1 + 2\beta_3 < 1$, M possess unique fixed point in Ξ.

Proof. Let $\{\zeta_n\}$ be arbitrary sequence in Ξ.

Define $\zeta_0 \in \Xi$, such that $M\zeta_n = \zeta_{n+1}, \forall n = 0, 1, 2, ...$

Applying (3.2),
\[
\varphi(\zeta_n, \zeta_{n+1}) \leq \left[\varphi(\zeta_{n-1}, \zeta_n)\right]^{\left[\frac{\beta_1+2\beta_2+4\beta_3}{1-2\beta_2-2\beta_3}\right]}.
\]
\[
\varphi(\zeta_n, \zeta_{n+1}) \leq \left[\varphi(\zeta_{n-1}, \zeta_n)\right]^r, \text{ where } r = \frac{\beta_1+2\beta_2+4\beta_3}{1-2\beta_2-2\beta_3} < 1.
\]
Since $\beta_1 + 2\beta_2 + 4\beta_3 < 1$, by repeating iteration, we have
\[
\varphi(\zeta_n, \zeta_{n+1}) \leq \left[\varphi(\zeta_0, \zeta_1)\right]^n. \text{ Since } 0 \leq r < 1, r^n \to 0 \text{ as } n \to \infty \text{ and so } \varphi(\zeta_n, \zeta_{n+1}) = 1.
\]
Thus, $\{\zeta_n\}$ is multiplicative Cauchy sequence.

Since Ξ is complete, $\lim_{n \to \infty} \zeta_n = l$.

As M is continuous, $M(l) = M\left(\lim_{n \to \infty} \zeta_n\right) = \lim_{n \to \infty} M\zeta_n = \lim_{n \to \infty} \zeta_{n+1} = l$.

Thus l is the fixed point of M. To prove uniqueness, if $Mg = g$, then, using (3.2),
\[
\varphi(l, g) \leq \left[\varphi(l, g)\right]^{(\beta_1+2\beta_3)} \text{ which implies } \left[\varphi(l, g)\right]^{(1-\beta_1-2\beta_3)} < 1, \text{ a contradiction, since } (\beta_1 + 2\beta_3) < 1.
\]

\[\Box\]

The following example satisfies all the hypotheses of Theorems 3.1 and 3.2.

Example 3.3. Let $\Xi = \mathbb{R}$ with the metric $\varphi(\zeta, \tau) = e^{\left|\zeta-\tau\right|}$. Since Ξ is complete under the usual metric, so it is for φ.

Let $M(\zeta) = \frac{1}{2}\zeta + \kappa$, $\kappa \neq 0$ be a continuous map from \mathbb{R} onto itself.

Note that,
\[
\varphi(\zeta(\zeta)), \varphi(M(\tau)) = e^{\left|M(\zeta)-M(\tau)\right|} = e^{\left|\zeta-\tau\right|} = \left(e^{\left|\zeta-\tau\right|}\right)^{\frac{1}{2}} = (d(\zeta, \tau))^{\frac{1}{2}}.
\]
Assuming that $\beta_1 = 1/2$ and $\beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$,

we obtain the unique fixed point $\zeta = 2\kappa$.

References

