International Journal of Mathematics and Computer Science Volume **20**, Issue no. 1, (2025), 317–320 DOI: https://doi.org/10.69793/ijmcs/01.2025/rartes

Cycles in the Corona of Graphs: A Polynomial Representation

Cerina A. Villarta¹, Precious Jane F. Lapura², Phoebe Jean J. Domen³, Sherlyn U. Sappayani³, Bayah J. Amiruddin-Rajik³, Rosalio G. Artes Jr.³

> ¹Central Mindanao University 8710 Musuan, Bukidnon, Philippines

²University of Science and Technology of Southern Philippines 9000 Cagayan de Oro City, Philippines

³Mindanao State University Tawi-Tawi College of Technology and Oceanography 7500 Bongao, Tawi-Tawi, Philippines

email: f.cerina.villarta@cmu.edu.ph, preciousjane.lapura@ustp.edu.ph, phoebejeandomen@msutawi-tawi.edu.ph, sherlynsappayani@msutawi-tawi.edu.ph, bayahamiruddin@msutawi-tawi.edu.ph, rosalioartes@msutawi-tawi.edu.ph

> (Received October 4, 2024, Accepted November 4, 2024, Published November 5, 2024)

Abstract

In this work, we characterize the induced cycles in the vertex corona of graphs. Moreover, we establish the induced cycle polynomial of graphs resulting from this binary graph operation.

1 Introduction

The study of graph representations in terms of polynomials has captured the interests of discrete mathematicians because of their contributions in the

Key words and phrases: Induced cycle, cycle polynomial, vertex corona. AMS (MOS) Subject Classifications: 05C25, 05C30, 05C31. ISSN 1814-0432, 2025, https://future-in-tech.net areas of Biology, Physics and Chemistry [1]. Maldo and Artes [3] explored the geodetic independence polynomial of graphs. Villarta, Eballe, and Artes [4] pioneered the work on induced path polynomials and established results for graphs under some binary operations. Madalim et al. [2] introduced the concept of induced cycle polynomial of graphs and established some of its properties.

In this paper, we extend the work in [2] to graphs resulting from the vertex corona of two cyclic connected graphs. The *induced cycle polynomial* of a cyclic graph G is given by

$$\Gamma_{ic}(G;x) = \sum_{i=3}^{c(G)} c_i(G) x^i,$$

where $c_i(G)$ is the number of induced cycles in G of order *i* and c(G) is the cardinality of the maximum cycle in G [2].

2 Results on Vertex Corona of Graphs

Following is the definition of the vertex corona of graphs.

Definition 2.1. The *vertex corona* of G with H, denoted by $G \stackrel{v}{\circ} H$, is the graph with vertex-set

$$V(G \overset{v}{\circ} H) = V(G) \cup \bigcup_{v \in V(G)} V(H^v),$$

where H^v is a copy of H attached to $v \in V(G)$. We denote by (v, u) a vertex in H^v , where $u \in V(H)$. The edge-set is given by

$$E(G \stackrel{v}{\circ} H) = E(G) \cup \bigcup_{v \in V(G)} E(H^v) \cup \bigcup_{v \in V(G)} \{vw : w \in V(H^v)\}$$

Observe that if $u, v \in V(G)$ and w is in a copy of H, then $\{u, v, w\}$ cannot be in a cycle in $G \stackrel{v}{\circ} H$.

The following result is straightforward.

Lemma 2.2. If S induces a cycle in $G \stackrel{v}{\circ} H$ and $|S \cap V(G)| \ge 2$, then $S \subseteq V(G)$.

The above lemma asserts that if S induces a cycle in $G \stackrel{v}{\circ} H$ and S contains at least two vertices from G, then S must be in G.

Lemma 2.3. If S induces a cycle in $G \stackrel{v}{\circ} H$, then S cannot contain elements from different copies of H.

Proof. Let S be a cycle-inducing subset of $V(G \circ^{v} H)$. Suppose, on the contrary, that there exist $u, v \in V(G)$ such that S intersects both H^{u} and S^{v} . Now, u is a cut-vertex of $G \circ^{v} H$. This means that there is no path joining a vertex in H^{u} and a vertex from H^{v} . Hence, S cannot induce a cycle in $G \circ^{v} H$.

The above lemma asserts that if $S \cap V(H^v) \neq \emptyset$, then $S \cap V(H^u) = \emptyset$ for every $u \in V(G) \setminus \{v\}$.

Next, we characterize the induced cycles in the vertex corona of graphs.

Lemma 2.4. Let G and H be cyclic connected graphs. A subset S of $V(G \overset{v}{\circ} H)$ induces a cycle in $G \overset{v}{\circ} H$ if and only if it satisfies one of the following:

- (i) S induces a cycle in G
- (ii) S induces a cycle in a copy H^v of H attached to $v \in V(G)$.
- (iii) $S = \{v\} \cup S_{H^v}$, where $v \in V(G)$ and S_{H^v} induces a K_2 in H^v , a copy of H attached to $v \in V(G)$.

Proof. Let $S \subseteq V(G \stackrel{v}{\circ} H)$. Suppose S induces a cycle in $G \stackrel{v}{\circ} H$. If S contains two vertices from G, then, by Lemma 2.2, $S \subseteq V(G)$. Hence, S induces a cycle in G and (i) is satisfied.

Suppose that $|S \cap V(G)| = 1$. Let $S \cap V(G) = \{v\}$. Then $S \setminus \{v\} \subseteq V(H^v)$, by Lemma 2.3. If $|S \cap V(H^v)| \geq 3$, then $\deg_G(v) \geq 3$. Hence, $\langle S \rangle$ is not a cycle in $G \stackrel{v}{\circ} H$. Consequently, $|S \cap V(H^v)| = 2$ with $\langle S \cap V(H^v) \rangle = K_2$ in H^v . Hence, (*iii*) is satisfied.

Now, if $S \cap V(G) = \emptyset$, then S induces a cycle in a copy of H. Thus, (*ii*) is satisfied.

The converse follows easily.

Now, we establish the main result.

Theorem 2.5. Let G and H be cyclic connected graphs. Then

$$\Gamma_{ic}(G \circ H; x) = \Gamma_{ic}(G; x) + |V(G)|\Gamma_{ic}(H; x) + |V(G)||E(H)|x^3.$$

Proof. The first term follows from Lemma 2.4 (*i*). Note that $G \stackrel{v}{\circ} H$ has |V(G)| copies of H. By Lemma 2.4 (*ii*), we have the second term. Now for each $e = wz \in V(H^v)$, the set $\{w, z, v\}$ induces a triangle in $G \stackrel{v}{\circ} H$. Summing up gives the third term. The result follows by combining the terms.

References

- [1] J. Ellis-Monaghan, J. Merino, Graph Polynomials and Their Applications II: Interrelations and Interpretations, Birkhauser, Boston, 2011.
- [2] R.E. Madalim, R.G. Eballe, A.H. Arajaini, R.G. Artes Jr, Induced Cycle Polynomial of a Graph, Advances and Applications in Discrete Mathematics, 38, no. 1, (2023), 83–94. https://doi.org/10.17654/0974165823020
- [3] J.F.B. Maldo, R.G. Artes Jr., Applications of Chuh-Shih-Chieh's Identity in Geodetic Independence Polynomials, *International Journal of Mathematics and Computer Science*, **19**, no. 3, (2024), 649–652.
- [4] C.A. Villarta, R.G. Eballe, R.G. Artes Jr., Induced Path Polynomials of the Join and Corona of Graphs. *International Journal of Mathematics* and Computer Science, **19**, no. 3, (2024), 643–647.

320