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Abstract

In this paper, we introduce the notion of slightly (τ1, τ2)s-continuous
functions. Moreover, we investigate several characterizations of slightly
(τ1, τ2)s-continuous functions.

1 Introduction

The notion of slightly continuous functions was introduced by Jain [14]. Nour
[15] defined slightly semi-continuous functions as a weak form of slight con-
tinuity and investigated some characterizations of slightly semi-continuous
functions. Duangphui et al. [13] introduced and investigated the notion of
(µ, µ′)(m,n)-continuous functions. Viriyapong and Boonpok [19] investigated
some characterizations of (Λ, sp)-continuous functions by utilizing the notions
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of (Λ, sp)-open sets and (Λ, sp)-closed sets due to Boonpok and Khampakdee
[6]. Moreover, some characterizations of strongly θ(Λ, p)-continuous func-
tions, almost strongly θ(Λ, p)-continuous functions, ⋆-continuous functions,
θ(⋆)-precontinuous functions, (Λ, p(⋆))-continuous functions, θ-I -continuous
functions, almost (g,m)-continuous functions, pairwise almost M-continuous
functions, δp(Λ, s)-continuous functions, (τ1, τ2)-continuous functions and al-
most (τ1, τ2)-continuous functions were presented in [18], [3], [4], [5], [7], [8],
[12], [11], [17], [1] and [2], respectively. Sangviset et al. [16] introduced and
studied the concept of slightly (m,µ)-continuous functions. In this paper, we
introduce the notion of slightly (τ1, τ2)s-continuous functions. We also inves-
tigate several characterizations of slightly (τ1, τ2)s-continuous functions.

2 Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply
X and Y ) always mean bitopological spaces on which no separation axioms
are assumed unless explicitly stated. Let A be a subset of a bitopological
space (X, τ1, τ2). The closure of A and the interior of A with respect to τi are
denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a
bitopological space (X, τ1, τ2) is called τ1τ2-closed [10] if A = τ1-Cl(τ2-Cl(A)).
The complement of a τ1τ2-closed set is called τ1τ2-open. A subset A of a
bitopological space (X, τ1, τ2) is said to be τ1τ2-clopen [10] if A is both τ1τ2-
open and τ1τ2-closed. Let A be a subset of a bitopological space (X, τ1, τ2).
The intersection of all τ1τ2-closed sets of X containing A is called the τ1τ2-
closure [10] of A and is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open
sets of X contained in A is called the τ1τ2-interior [10] of A and is denoted
by τ1τ2-Int(A). A subset A of a bitopological space (X, τ1, τ2) is said to
be (τ1, τ2)s-open [9] (resp. (τ1, τ2)p-open [9]) if A ⊆ τ1τ2-Cl(τ1τ2-Int(A))
(resp. A ⊆ τ1τ2-Int(τ1τ2-Cl(A))). The complement of a (τ1, τ2)s-open (resp.
(τ1, τ2)p-open) set is said to be (τ1, τ2)s-closed (resp. (τ1, τ2)p-closed). Let
A be a subset of a bitopological space (X, τ1, τ2). The intersection of all
(τ1, τ2)s-closed sets of X containing A is called the (τ1, τ2)s-closure [9] of
A and is denoted by (τ1, τ2)-sCl(A). The union of all (τ1, τ2)s-open sets of
X contained in A is called the (τ1, τ2)s-interior [9] of A and is denoted by
(τ1, τ2)-sInt(A).

Lemma 2.1. For subsets A and B of a bitopological space (X, τ1, τ2), the
following properties hold:

(1) If A ⊆ B, then (τ1, τ2)-sCl(A) ⊆ (τ1, τ2)-sCl(B).
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(2) A is (τ1, τ2)s-closed if and only if A = (τ1, τ2)-sCl(A).

(3) (τ1, τ2)-sCl(X − A) = X − (τ1, τ2)-sInt(A).

3 Slightly (τ1, τ2)s-continuous functions

We begin this section by introducing the notion of slightly (τ1, τ2)s-continuous
functions.

Definition 3.1. A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be slightly
(τ1, τ2)s-continuous at a point x ∈ X if for each σ1σ2-clopen set V of Y

containing f(x), there exists a (τ1, τ2)s-open set U of X containing x such
that f(U) ⊆ V . A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be slightly
(τ1, τ2)s-continuous if f has this property at every point of X.

Theorem 3.2. For a function f : (X, τ1, τ2) → (Y, σ1, σ2), the following
properties are equivalent:

(1) f is slightly (τ1, τ2)s-continuous;

(2) f−1(V ) is (τ1, τ2)s-open in X for each σ1σ2-clopen set V of Y ;

(3) f−1(V ) is (τ1, τ2)s-closed in X for each σ1σ2-clopen set V of Y ;

(4) for each x ∈ X and for each σ1σ2-clopen set V of Y containing f(x),
there exists a (τ1, τ2)s-open set U of X containing x such that f(U) ⊆
V .

Proof. (1) ⇒ (2): Let V be any σ1σ2-clopen set V of Y and x ∈ f−1(V ).
Then f(x) ∈ V . Since f is slightly (τ1, τ2)s-continuous, there exists a
(τ1, τ2)s-open set U of X containing x such that f(U) ⊆ V . Thus x ∈ U ⊆

f−1(V ) and hence x ∈ (τ1, τ2)-sInt(f
−1(V )). This implies that f−1(V ) ⊆

(τ1, τ2)-sInt(f
−1(V )). Therefore, f−1(V ) is (τ1, τ2)s-open in X .

(2) ⇔ (3): Obvious.
(2) ⇒ (1): Let x ∈ X and V be any σ1σ2-clopen set V of Y containing

f(x). Then x ∈ f−1(V ) = (τ1, τ2)-sInt(f
−1(V )). There exists a (τ1, τ2)s-

open set U of X containing x such that U ⊆ f−1(V ). Thus f(U) ⊆ V and
hence f is slightly (τ1, τ2)s-continuous at x. This shows that f is slightly
(τ1, τ2)s-continuous.

(1) ⇔ (4): Obvious.
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Recall that a bitopological space (X, τ1, τ2) is said to be τ1τ2-connected
[10] if X cannot be written as the union of two disjoint nonempty τ1τ2-open
sets.

Definition 3.3. A bitopological space (X, τ1, τ2) is called (τ1, τ2)s-connected
if X cannot be written as the union of two disjoint nonempty (τ1, τ2)s-open
sets.

Theorem 3.4. If f : (X, τ1, τ2) → (Y, σ1, σ2) is a slightly (τ1, τ2)s-continuous
surjection and (X, τ1, τ2) is a (τ1, τ2)s-connected space, then (Y, σ1, σ2) is
σ1σ2-connected.

Proof. Assume that (Y, σ1, σ2) is not σ1σ2-connected. Then, there exist
nonempty σ1σ2-open sets U and V of Y such that U ∩V = ∅ and U ∪V = Y .
Therefore, U and V are σ1σ2-clopen sets of Y . Since f is slightly (τ1, τ2)s-
continuous, f−1(U) and f−1(U) are (τ1, τ2)s-open sets of X . Moreover, we
have f−1(U) ∩ f−1(V ) = ∅ and f−1(U) ∪ f−1(V ) = Y . Since f is surjective,
f−1(U) and f−1(V ) are nonempty. Thus (X, τ1, τ2) is not (τ1, τ2)s-connected.
This is a contradiction and hence (Y, σ1, σ2) is σ1σ2-connected.
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