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Abstract

In this paper, we investigate the sequence t-Neo balancing num-

bers by using the properties of Pell’s equation and the Brahmagupta’s

identity for generalized certain sequences.

1 Introduction

In this paper, we delve into the sequence {am = 2m−1} related to t-Neo bal-
ancing numbers, employing the properties of Pell’s equation [10] and Brah-
magupta’s identity [4, 5, 6]. Panda and Behera [1] defined the balancing
numbers which served as the catalyst for many generalized researches of bal-
ancing numbers [2, 3, 7, 8, 9]. Panda [8] defined a certain sequence of real
numbers {am} to be a sequence of balancing numbers. Dash and Ota [2, 3]
defined t-balancing numbers and hence a sequence t-balancing numbers {am}.
Chailangka and Pakapongpun [7] defined neo balancing numbers n ∈ N by
the Diophantine equation

1 + 2+ 3+ · · ·+ (n− 1) = (n− 1) + (n+ 0) + (n+ 1) + · · ·+ (n+ r). (1.1)
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2 The Certain Sequences on Sequence t-Neo

Balancing Numbers

In this section, we show the origin of sequence t-Neo balancing numbers
in another way with sequence t-balancing numbers. Let {an}∞n=1 be a real
sequence. The sequence {am} is called a sequence t-Neo balancing numbers
if am satisfies the Diophantine equation

a1 + a2 + a3 + · · ·+ am−1 = am+t−1 + am+t + am+t+1 + · · ·+ am+t+r, (2.2)

for some integer r.

2.1 The sequence {am = 2m − 1} on sequence t-Neo
balancing numbers

We investigate the sequence {am = 2m − 1}, which is called the sequence
t-Neo balancing numbers if

1+3+ · · ·+(2m−3) = (2m+2t−3)+(2m+2t−1)+ · · ·+(2m+2t+2r−1).

Now, we have 2n = 2r + 6 +
√
8r2 + 24r + 8rt+ 16t+ 16.

2.2 The recurrence relations for the sequence t-Neo

balancing number

Theorem 2.1. If am = 2m− 1 and n ≥ 3, then the recurrence relations for

the sequence t-Neo balancing number’s index is

m2n−1 = 6m2n−3 −m2n−5 − 6. (2.3)

Moreover, the recurrence relations for the sequence t-Neo balancing number

is

am2n−1
= 6am2n−3

− am2n−5
+ 4t− 8. (2.4)

Proof. Since {am} is a sequence t-Neo balancing number and m is a t-Neo
balancing number, 8r2+24r+8rt+16t+16 is a perfect square. Then we can
let y =

√
8r2 + 24r + 8rt+ 16t+ 16. Let x = 4r + 6 + 2t. Then we obtain

x2 − 2y2 = (2(t− 1))2 − 8. (2.5)
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Therefore, we have the triplet

(a, b, k) = (2(t− 1), 2, (2(t− 1))2 − 8). (2.6)

for the equation (2.5). Afterwards, we consider the Pell’s equation

x2 − 2y2 = 1. (2.7)

Then we get the expanded solution [10] of equation (2.7)

x̄n =
1

2
[(3 + 2

√
2)n + (3− 2

√
2)n] (2.8)

ȳn =
1

2
√
2
[(3 + 2

√
2)n − (3− 2

√
2)n]. (2.9)

Therefore, we have the triplet (xn, yn, 1) for equation (2.7). Thus, we compose
the triplets by Brahmagupta’s identity ([4, 5, 6]) and obtain the important
sequences with general terms

Xn = ax̄n + 2bȳn and X∗

n
= ax̄n − 2bȳn

Yn = bx̄n + aȳn Y ∗

n
= bx̄n − aȳn

which are the solution for equation (2.5). Therefore, we have

2Xn = (3 + 2
√
2)n(a+ b

√
2) + (3− 2

√
2)n(a− b

√
2)

2
√
2Yn = (3 + 2

√
2)n(a+ b

√
2)− (3− 2

√
2)n(a− b

√
2)

and

2X∗

n
= (3 + 2

√
2)n(a− b

√
2) + (3− 2

√
2)n(a+ b

√
2)

2
√
2Y ∗

n
= −(3 + 2

√
2)n(a− b

√
2) + (3− 2

√
2)n(a + b

√
2).

Then we obtain two sequences {Xn} and {Yn} satisfying the recurrence re-
lations

Xn = 6Xn−1 −Xn−2

Yn = 6Yn−1 − Yn−2.

Since we have already found 2n = 2r + 6 +
√
8r2 + 24r + 8rt+ 16t+ 16,

x = 4r + 6 + 2t and y =
√
8r2 + 24r + 8rt+ 16t+ 16, we get the index’s

relation
mn = 6mn−1 −mn−2 + 2t− 6.



48 N. Chailangka, A. Pakapongpun

Since we have defined the sequence {am = 2m−1}, we obtain the important
recurrence relation

amn
= 6amn−1

− amn−2
+ 4(t− 2).
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