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Abstract

In this article, we establish that there is a unique non-negative
solution to the Diophantine equation 675x + 896y = z

2. The solution
is (x, y, z) = (1, 0, 26).

1 Introduction

Numerous mathematical studies have focused on the Diophantine equations
of the type ax + by = z2, where a and b are fixed. For instance, in 2014,
Sroysang [3] demonstrated that the Diophantine equation 143x + 145y = z2

has a unique non-negative integer solution (x, y, z), which is (1, 0, 12). In
2023, N. Viriyapong and C. Viriyapong [5] proved that there are only two
non-negative integer solutions (x, y, z) to the Diophantine equation 255x +
323y = z2, which are (1, 0, 6) and (0, 1, 18). Then, in 2024, N. Viriyapong and
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C. Viriyapong [6] showed that the Diophantine equation 147x + 741y = z2

has no non-negative integer solution.
In this paper, we focus our attention on the Diophantine equation 675x+

896y = z2, in which x, y, and z are non-negative integers.

2 Preliminaries

Throughout this paper, a ≡m b is used to indicate that a is congruent to b

modulo m, where a, b, and m are integers such that m > 1. To further say
a ≡m b or a ≡m c, we will write a ≡m b, c.

Now, we recall the Catalan’s conjecture [1] dating back to 1844, was
proved by Mihailescu [2] in 2004.

Theorem 2.1 (Catalan’s conjecture). The Diophantine equation ax−by =
1 has a unique solution (a, b, x, y) = (3, 2, 2, 3), where a, b, x and y are inte-

gers with min{a, b, x, y} > 1.

Now, we mention two lemmas that follow from the Catalan’s conjecture.

Lemma 2.2. (1, 26) is the unique non-negative integer solution (x, z) for the
Diophantine equation 675x + 1 = z2.

Proof. Assume that there exist non-negative integers x and z such that 675x+
1 = z2. It is clear that x > 1. By Theorem 2.1, x = 1. This implies that
z = 26. This completes the proof.

Lemma 2.3. The Diophantine equation 1 + 896y = z2 has no solutions in

non-negative integers.

Proof. Assume that there exist non-negative integers y and z such that 1 +
896y = z2. Obviously, y > 1. By Theorem 2.1, y = 1. This implies that
z2 = 896 which contradicts z being an integer. The proof is complete.

Finally, we recall the following lemma [4].

Lemma 2.4. [4] If z is an integer, then z2 ≡13 0, 1, 3, 4, 9, 10, 12.

3 Main Results

Now, we will present our main result.

Theorem 3.1. The Diophantine equation 675x + 896y = z2 has the unique

non-negative integer solution (x, y, z) = (1, 0, 26).
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Proof. Assume that there exist non-negative integers x, y, and z such that
675x +896y = z2. By Lemma 2.2 and 2.3, it follows that (x, y, z) = (1, 0, 26)
is a solution of this equation. Now, we consider x > 1 and y > 1. If y is
odd, z2 = 675x + 896y ≡3 2, which is the contrary to fact that z2 ≡3 0, 1.
Then y is even. Thus, z2 = 675x + 896y ≡4 3 if x is odd, which contradicts
the fact that z2 ≡4 0, 1. Consequently, x is even. Since 675 ≡13 12 and
896 ≡13 12, we have z2 ≡13 2, which contradicts Lemma 2.4. The proof is
now complete.

Corollary 3.2. The Diophantine equation 678x+896y = z4 has no solution

in non-negative integers.

4 Conclusion

We have proved that (1, 0, 26) is the unique solution for the Diophantine
equation 675x + 896y = z2, where x, y, and z are non-negative integers.
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