International Journal of Mathematics and Computer Science Volume **20**, Issue no. 1, (2025), 415–417 DOI: https://doi.org/10.69793/ijmcs/01.2025/nongluk

On the Diophantine equation $675^x + 896^y = z^2$

Nongluk Viriyapong¹, Jenjira Puiwong²

¹Mathematics and Applied Mathematics Research Unit Department of Mathematics Mahasarakham University Maha Sarakham, 44150, Thailand

> ²Faculty of Education Rajabhat Mahasarakham University Maha Sarakham, 44000, Thailand

email: nongluk.h@msu.ac.th, jenjira.pu@rmu.ac.th

(Received November 8, 2024, Accepted December 9, 2024, Published December 11, 2024)

Abstract

In this article, we establish that there is a unique non-negative solution to the Diophantine equation $675^x + 896^y = z^2$. The solution is (x, y, z) = (1, 0, 26).

1 Introduction

Numerous mathematical studies have focused on the Diophantine equations of the type $a^x + b^y = z^2$, where a and b are fixed. For instance, in 2014, Sroysang [3] demonstrated that the Diophantine equation $143^x + 145^y = z^2$ has a unique non-negative integer solution (x, y, z), which is (1, 0, 12). In 2023, N. Viriyapong and C. Viriyapong [5] proved that there are only two non-negative integer solutions (x, y, z) to the Diophantine equation $255^x + 323^y = z^2$, which are (1, 0, 6) and (0, 1, 18). Then, in 2024, N. Viriyapong and

Key words and phrases: Diophantine equation, congruence. AMS (MOS) Subject Classifications: 11D61. The corresponding author is Nongluk Viriyapong. ISSN 1814-0432, 2025, https://future-in-tech.net C. Viriyapong [6] showed that the Diophantine equation $147^x + 741^y = z^2$ has no non-negative integer solution.

In this paper, we focus our attention on the Diophantine equation $675^x + 896^y = z^2$, in which x, y, and z are non-negative integers.

2 Preliminaries

Throughout this paper, $a \equiv_m b$ is used to indicate that a is congruent to b modulo m, where a, b, and m are integers such that $m \ge 1$. To further say $a \equiv_m b$ or $a \equiv_m c$, we will write $a \equiv_m b, c$.

Now, we recall the Catalan's conjecture [1] dating back to 1844, was proved by Mihailescu [2] in 2004.

Theorem 2.1 (Catalan's conjecture). The Diophantine equation $a^x - b^y = 1$ has a unique solution (a, b, x, y) = (3, 2, 2, 3), where a, b, x and y are integers with min $\{a, b, x, y\} > 1$.

Now, we mention two lemmas that follow from the Catalan's conjecture.

Lemma 2.2. (1, 26) is the unique non-negative integer solution (x, z) for the Diophantine equation $675^x + 1 = z^2$.

Proof. Assume that there exist non-negative integers x and z such that $675^x + 1 = z^2$. It is clear that $x \ge 1$. By Theorem 2.1, x = 1. This implies that z = 26. This completes the proof.

Lemma 2.3. The Diophantine equation $1 + 896^y = z^2$ has no solutions in non-negative integers.

Proof. Assume that there exist non-negative integers y and z such that $1 + 896^y = z^2$. Obviously, $y \ge 1$. By Theorem 2.1, y = 1. This implies that $z^2 = 896$ which contradicts z being an integer. The proof is complete.

Finally, we recall the following lemma [4].

Lemma 2.4. [4] If z is an integer, then $z^2 \equiv_{13} 0, 1, 3, 4, 9, 10, 12$.

3 Main Results

Now, we will present our main result.

Theorem 3.1. The Diophantine equation $675^x + 896^y = z^2$ has the unique non-negative integer solution (x, y, z) = (1, 0, 26).

On the Diophantine equation $675^x + 896^y = z^2$

Proof. Assume that there exist non-negative integers x, y, and z such that $675^x + 896^y = z^2$. By Lemma 2.2 and 2.3, it follows that (x, y, z) = (1, 0, 26) is a solution of this equation. Now, we consider $x \ge 1$ and $y \ge 1$. If y is odd, $z^2 = 675^x + 896^y \equiv_3 2$, which is the contrary to fact that $z^2 \equiv_3 0, 1$. Then y is even. Thus, $z^2 = 675^x + 896^y \equiv_4 3$ if x is odd, which contradicts the fact that $z^2 \equiv_4 0, 1$. Consequently, x is even. Since $675 \equiv_{13} 12$ and $896 \equiv_{13} 12$, we have $z^2 \equiv_{13} 2$, which contradicts Lemma 2.4. The proof is now complete. □

Corollary 3.2. The Diophantine equation $678^x + 896^y = z^4$ has no solution in non-negative integers.

4 Conclusion

We have proved that (1, 0, 26) is the unique solution for the Diophantine equation $675^x + 896^y = z^2$, where x, y, and z are non-negative integers.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- [1] E. Catalan, Note extraite dune lettre adressee a lediteur, J. Reine Angew. Math., 27, (1844), 192.
- [2] S. Mihailescu, Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572, (2004), 167–195.
- [3] B. Sroysang, On the Diophantine Equation $143^x + 145^y = z^2$, Int. J. Pure Appl. Math., **91**, no. 2, (2014), 265–268.
- [4] N. Viriyapong, C. Viriyapong, On the Diophantine Equation $n^x + 13^y = z^2$, where $n \equiv 2 \pmod{39}$ and n + 1 is not a square number, WSEAS Trans. Math., **20**, (2021), 442–445.
- [5] N. Viriyapong, C. Viriyapong, On the Diophantine equation $255 + 323^y = z^2$, Int. J. Math. Comput. Sci., **18**, no. 3, (2023), 521–523.
- [6] N. Viriyapong, C. Viriyapong, On the Diophantine equation $147 + 741^y = z^2$, Int. J. Math. Comput. Sci., **19**, no. 2, (2024), 445–447.