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Abstract

In this paper, we introduce the notions of upper and lower slightly
(τ1, τ2)s-continuous multifunctions. Moreover, we investigate several
characterizations of upper and lower slightly (τ1, τ2)s-continuous mul-
tifunctions.

1 Introduction

Jain [11] introduced the notion of slightly continuous functions. Nour [14]
defined slightly semi-continuous functions as a weak form of slight continu-
ity and investigated some characterizations of slightly semi-continuous func-
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tions. Duangphui et al. [10] introduced and studied the notion of (µ, µ′)(m,n)-
continuous functions. Moreover, some characterizations of strongly θ(Λ, p)-
continuous functions, (Λ, sp)-continuous functions, ⋆-continuous functions
and θ-I -continuous functions were presented in [16], [17], [2] and [6], re-
spectively. Sangviset et al. [15] introduced and investigated the concept
of slightly (m,µ)-continuous functions. Noiri and Popa [13] introduced the
notion of slightly m-continuous multifunctions and studied the relationships
among m-continuity, almost m-continuity, weak m-continuity and slight m-
continuity for multifunctions. Laprom et al. [12] introduced and investigated
the notion of β(τ1, τ2)-continuous multifunctions. Furthermore, several char-
acterizations of ⋆-continuous multifunctions, β(⋆)-continuous multifunctions,
weakly (τ1, τ2)α-continuous multifunctions, almost weakly (τ1, τ2)-continuous
multifunctions and slightly (Λ, sp)-continuous multifunctions were established
in [8], [5], [18], [4] and [3], respectively. In this paper, we introduce the
notions of upper and lower slightly (τ1, τ2)s-continuous multifunctions. We
also investigate several characterizations of upper and lower slightly (τ1, τ2)s-
continuous multifunctions.

2 Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply
X and Y ) always mean bitopological spaces on which no separation axioms
are assumed unless explicitly stated. Let A be a subset of a bitopological
space (X, τ1, τ2). The closure of A and the interior of A with respect to τi are
denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a
bitopological space (X, τ1, τ2) is called τ1τ2-closed [9] if A = τ1-Cl(τ2-Cl(A)).
The complement of a τ1τ2-closed set is called τ1τ2-open. A subset A of a
bitopological space (X, τ1, τ2) is said to be τ1τ2-clopen [9] if A is both τ1τ2-
open and τ1τ2-closed. Let A be a subset of a bitopological space (X, τ1, τ2).
The intersection of all τ1τ2-closed sets of X containing A is called the τ1τ2-
closure [9] of A and is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open
sets of X contained in A is called the τ1τ2-interior [9] of A and is denoted
by τ1τ2-Int(A). A subset A of a bitopological space (X, τ1, τ2) is said to be
(τ1, τ2)s-open if A ⊆ τ1τ2-Cl(τ1τ2-Int(A)). The complement of a (τ1, τ2)s-
open set is said to be (τ1, τ2)s-closed. The intersection of all (τ1, τ2)s-closed
sets of X containing A is called the (τ1, τ2)s-closure [7] of A and is denoted
by (τ1, τ2)-sCl(A). The union of all (τ1, τ2)s-open sets of X contained in A is
called the (τ1, τ2)s-interior [7] of A and is denoted by (τ1, τ2)-sInt(A).
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By a multifunction F : X → Y , we mean a point-to-set correspondence
from X into Y , and we always assume that F (x) 6= ∅ for all x ∈ X . For
a multifunction F : X → Y , following [1] we shall denote the upper and
lower inverse of a set B of Y by F+(B) and F−(B), respectively, that is,
F+(B) = {x ∈ X | F (x) ⊆ B} and F−(B) = {x ∈ X | F (x) ∩B 6= ∅}.

3 Upper and lower slightly (τ1, τ2)s-continuous

multifunctions

We begin this section by introducing the notion of upper slightly (τ1, τ2)s-
continuous multifunctions.

Definition 3.1. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be
upper slightly (τ1, τ2)s-continuous at a point x ∈ X if for each σ1σ2-clopen set
V of Y containing F (x), there exists a (τ1, τ2)s-open set U of X containing
x such that F (U) ⊆ V . A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said
to be upper slightly (τ1, τ2)s-continuous if F has this property at every point
of X.

Theorem 3.2. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the follow-
ing properties are equivalent:

(1) F is upper slightly (τ1, τ2)s-continuous;

(2) F+(V ) is (τ1, τ2)s-open in X for every σ1σ2-clopen set V of Y ;

(3) F−(V ) is (τ1, τ2)s-closed in X for every σ1σ2-clopen set V of Y ;

(4) for each x ∈ X and each σ1σ2-clopen set V of Y such that x ∈ F+(V ),
there exists a (τ1, τ2)s-open set U of X containing x such that U ⊆
F+(V ).

Proof. (1) ⇒ (2): Let V be any σ1σ2-clopen set V of Y and x ∈ F+(V ). Then
F (x) ⊆ V . By (1), there exists a (τ1, τ2)s-open set U of X containing x such
that F (U) ⊆ V . Thus x ∈ U ⊆ F+(V ) and hence x ∈ (τ1, τ2)-sInt(F

+(V )).
Therefore, F+(V ) ⊆ (τ1, τ2)-sInt(F

+(V )) and so F+(V ) is (τ1, τ2)s-open in
X .

(2) ⇔ (3): Obvious.
(2) ⇒ (1): Let x ∈ X and V be any σ1σ2-clopen set V of Y containing

F (x). Then x ∈ F+(V ) = (τ1, τ2)-sInt(F
+(V )). There exists a (τ1, τ2)s-open

set U of X containing x such that U ⊆ F+(V ). Thus F (U) ⊆ V and hence
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F is upper slightly (τ1, τ2)s-continuous at x. This shows that F is upper
slightly (τ1, τ2)s-continuous.

(1) ⇔ (4): Obvious.

Definition 3.3. A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be
lower slightly (τ1, τ2)s-continuous at a point x ∈ X if for each σ1σ2-clopen
set V of Y such that F (x) ∩ V 6= ∅, there exists a (τ1, τ2)s-open set U of
X containing x such that F (z) ∩ V 6= ∅ for each z ∈ U . A multifunction
F : (X, τ1, τ2) → (Y, σ1, σ2) is said to be lower slightly (τ1, τ2)s-continuous if
F has this property at every point of X.

Theorem 3.4. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the follow-
ing properties are equivalent:

(1) F is lower slightly (τ1, τ2)s-continuous;

(2) F−(V ) is (τ1, τ2)s-open in X for every σ1σ2-clopen set V of Y ;

(3) F+(V ) is (τ1, τ2)s-closed in X for every σ1σ2-clopen set V of Y ;

(4) for each x ∈ X and each σ1σ2-clopen set V of Y such that x ∈ F−(V ),
there exists a (τ1, τ2)s-open set U of X containing x such that U ⊆
F−(V ).

Proof. The proof is similar to that of Theorem 3.2.
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