International Journal of Mathematics and Computer Science, **20**(2025), no. 1, 89–93 DOI: https://doi.org/10.69793/ijmcs/01.2025/khampakdee

Slight (τ_1, τ_2) s-continuity for multifunctions

$\begin{array}{c} \mbox{Jeeranunt Khampakdee}^1, \mbox{Supannee Sompong}^2,\\ \mbox{Chawalit Boonpok}^1 \end{array}$

¹Mathematics and Applied Mathematics Research Unit Department of Mathematics Faculty of Science Mahasarakham University Maha Sarakham, 44150, Thailand

> ²Department of Mathematics and Statistics Faculty of Science and Technology Sakon Nakhon Rajbhat University Sakon Nakhon, 47000, Thailand

email: jeeranunt.k@msu.ac.th, s_sompong@snru.ac.th, chawalit.b@msu.ac.th

(Received June 2, 2024, Revised July 3, 2024, Accepted July 11, 2024, Published July 17, 2024)

Abstract

In this paper, we introduce the notions of upper and lower slightly $(\tau_1, \tau_2)s$ -continuous multifunctions. Moreover, we investigate several characterizations of upper and lower slightly $(\tau_1, \tau_2)s$ -continuous multifunctions.

1 Introduction

Jain [11] introduced the notion of slightly continuous functions. Nour [14] defined slightly semi-continuous functions as a weak form of slight continuity and investigated some characterizations of slightly semi-continuous func-

Key words and phrases: Upper slightly $(\tau_1, \tau_2)s$ -continuous multifunction, lower slightly $(\tau_1, \tau_2)s$ -continuous multifunction.

AMS (MOS) Subject Classifications: 54C08, 54C60, 54E55.

The corresponding author is Jeeranunt Khampakdee.

ISSN 1814-0432, 2025, http://ijmcs.future-in-tech.net

tions. Duangphui et al. [10] introduced and studied the notion of $(\mu, \mu')^{(m,n)}$ continuous functions. Moreover, some characterizations of strongly $\theta(\Lambda, p)$ continuous functions, (Λ, sp) -continuous functions, \star -continuous functions and θ - \mathscr{I} -continuous functions were presented in [16], [17], [2] and [6], respectively. Sangviset et al. [15] introduced and investigated the concept of slightly (m,μ) -continuous functions. Noiri and Popa [13] introduced the notion of slightly *m*-continuous multifunctions and studied the relationships among *m*-continuity, almost *m*-continuity, weak *m*-continuity and slight *m*continuity for multifunctions. Laprom et al. [12] introduced and investigated the notion of $\beta(\tau_1, \tau_2)$ -continuous multifunctions. Furthermore, several characterizations of \star -continuous multifunctions, $\beta(\star)$ -continuous multifunctions, weakly $(\tau_1, \tau_2)\alpha$ -continuous multifunctions, almost weakly (τ_1, τ_2) -continuous multifunctions and slightly (Λ, sp) -continuous multifunctions were established in [8], [5], [18], [4] and [3], respectively. In this paper, we introduce the notions of upper and lower slightly (τ_1, τ_2) s-continuous multifunctions. We also investigate several characterizations of upper and lower slightly $(\tau_1, \tau_2)s$ continuous multifunctions.

2 Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [9] if $A = \tau_1$ -Cl $(\tau_2$ -Cl(A)). The complement of a $\tau_1\tau_2$ -closed set is called $\tau_1\tau_2$ -open. A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1 \tau_2$ -clopen [9] if A is both $\tau_1 \tau_2$ open and $\tau_1 \tau_2$ -closed. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The intersection of all $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1 \tau_2$ closure [9] of A and is denoted by $\tau_1 \tau_2$ -Cl(A). The union of all $\tau_1 \tau_2$ -open sets of X contained in A is called the $\tau_1 \tau_2$ -interior [9] of A and is denoted by $\tau_1 \tau_2$ -Int(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) s-open if $A \subseteq \tau_1 \tau_2$ -Cl $(\tau_1 \tau_2$ -Int(A)). The complement of a (τ_1, τ_2) sopen set is said to be (τ_1, τ_2) *s-closed*. The intersection of all (τ_1, τ_2) *s*-closed sets of X containing A is called the (τ_1, τ_2) s-closure [7] of A and is denoted by (τ_1, τ_2) -sCl(A). The union of all (τ_1, τ_2) s-open sets of X contained in A is called the (τ_1, τ_2) *s-interior* [7] of A and is denoted by (τ_1, τ_2) -sInt(A).

By a multifunction $F : X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F : X \to Y$, following [1] we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and $F^-(B) = \{x \in X \mid F(x) \cap B \neq \emptyset\}$.

3 Upper and lower slightly $(\tau_1, \tau_2)s$ -continuous multifunctions

We begin this section by introducing the notion of upper slightly $(\tau_1, \tau_2)s$ continuous multifunctions.

Definition 3.1. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper slightly (τ_1, τ_2) s-continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -clopen set V of Y containing F(x), there exists a (τ_1, τ_2) s-open set U of X containing x such that $F(U) \subseteq V$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper slightly (τ_1, τ_2) s-continuous if F has this property at every point of X.

Theorem 3.2. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is upper slightly (τ_1, τ_2) s-continuous;
- (2) $F^+(V)$ is (τ_1, τ_2) s-open in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (3) $F^{-}(V)$ is (τ_1, τ_2) s-closed in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (4) for each $x \in X$ and each $\sigma_1 \sigma_2$ -clopen set V of Y such that $x \in F^+(V)$, there exists a (τ_1, τ_2) s-open set U of X containing x such that $U \subseteq F^+(V)$.

Proof. (1) \Rightarrow (2): Let V be any $\sigma_1 \sigma_2$ -clopen set V of Y and $x \in F^+(V)$. Then $F(x) \subseteq V$. By (1), there exists a $(\tau_1, \tau_2)s$ -open set U of X containing x such that $F(U) \subseteq V$. Thus $x \in U \subseteq F^+(V)$ and hence $x \in (\tau_1, \tau_2)$ -sInt $(F^+(V))$. Therefore, $F^+(V) \subseteq (\tau_1, \tau_2)$ -sInt $(F^+(V))$ and so $F^+(V)$ is $(\tau_1, \tau_2)s$ -open in X.

 $(2) \Leftrightarrow (3)$: Obvious.

 $(2) \Rightarrow (1)$: Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -clopen set V of Y containing F(x). Then $x \in F^+(V) = (\tau_1, \tau_2)$ -sInt $(F^+(V))$. There exists a $(\tau_1, \tau_2)s$ -open set U of X containing x such that $U \subseteq F^+(V)$. Thus $F(U) \subseteq V$ and hence

F is upper slightly $(\tau_1, \tau_2)s$ -continuous at x. This shows that F is upper slightly $(\tau_1, \tau_2)s$ -continuous.

 $(1) \Leftrightarrow (4)$: Obvious.

Definition 3.3. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower slightly (τ_1, τ_2) s-continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -clopen set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a (τ_1, τ_2) s-open set U of X containing x such that $F(z) \cap V \neq \emptyset$ for each $z \in U$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower slightly (τ_1, τ_2) s-continuous if F has this property at every point of X.

Theorem 3.4. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) F is lower slightly (τ_1, τ_2) s-continuous;
- (2) $F^{-}(V)$ is (τ_1, τ_2) s-open in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (3) $F^+(V)$ is (τ_1, τ_2) s-closed in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (4) for each $x \in X$ and each $\sigma_1 \sigma_2$ -clopen set V of Y such that $x \in F^-(V)$, there exists a (τ_1, τ_2) s-open set U of X containing x such that $U \subseteq F^-(V)$.

Proof. The proof is similar to that of Theorem 3.2.

Acknowledgment. This research project was financially supported by Mahasarakham University.

References

- C. Berge, Espaces topologiques fonctions multivoques, Dunod, Paris, 1959.
- [2] C. Boonpok, On some spaces via topological ideals, Open Math., 21, (2023), 20230118.
- [3] C. Boonpok, J. Khampakdee, Slight (Λ, sp) -continuity and Λ_{sp} extremally disconnectedness, Eur. J. Pure Appl. Math., **15**, no. 3, (2022), 1180–1188.
- [4] C. Boonpok, C. Viriyapong, Upper and lower almost weak (τ_1, τ_2) continuity, Eur. J. Pure Appl. Math., 14, no. 4, (2021), 1212–1225.

- [5] C. Boonpok, Upper and lower $\beta(\star)$ -continuity, Heliyon, 7, (2021), e05986.
- [6] C. Boonpok, On characterizations of *-hyperconnected ideal topological spaces, J. Math., (2020), 9387601.
- [7] C. Boonpok, $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions, Heliyon, **6**, (2020), e05367.
- [8] C. Boonpok, On continuous multifunctions in ideal topological spaces, Lobachevskii J. Math., 40, no. 1, (2019), 24–35.
- [9] C. Boonpok, C. Viriyapong, M. Thongmoon, On upper and lower (τ_1, τ_2) -precontinuous multifunctions, J. Math. Computer Sci., **18**, (2018), 282–293.
- [10] T. Duangphui, C. Boonpok, C. Viriyapong, Continuous functions on bigeneralized topological spaces, Int. J. Math. Anal., 5, no. 24, (2011), 1165–1174.
- [11] R. C. Jain, The role of regularly open sets in general topology, Ph.D. Thesis, Meerut University, Meerut, 1980.
- [12] K. Laprom, C. Boonpok, C. Viriyapong, $\beta(\tau_1, \tau_2)$ -continuous multifunctions on bitopological spaces, J. Math., (2020), 4020971.
- [13] T. Noiri, V. Popa, Slightly *m*-continuous multifunctions, Bull. Inst. Math. Acad. Sinica (New Series), 1, no. 4, (2006), 485–501.
- [14] T. M. Nour, Slightly semi-continuous functions, Bull. Calcutta Math. Soc., 87, no. 2, (1995), 187–190.
- [15] P. Sangviset, C. Boonpok, C. Viriyapong, Slightly (m, μ)-continuous functions, Far East J. Math. Sci., 85, no. 2, (2014), 165–176.
- [16] M. Thongmoon, C. Boonpok, Strongly $\theta(\Lambda, p)$ -continuous functions, Int. J. Math. Comput. Sci., **19**, no. 2, (2024), 475–479.
- [17] C. Viriyapong, C. Boonpok, (Λ, sp) -continuous functions, WSEAS Trans. Math., **21**, (2022), 380–385.
- [18] C. Viriyapong, C. Boonpok, $(\tau_1, \tau_2)\alpha$ -continuity for multifunctions, J. Math., (2020), 6285763.