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Abstract

Orlicz spaces have got the attention of many researchers over the

decades. Many spaces have been defined in terms of Orlicz spaces, in

particular Besov-Orlicz spaces. In this paper, we discuss this class of

spaces with modulus of continuity. We study the best approximation

of Besov-Orlicz spaces with splines and polynomials. The degree of

best approximation depends on modulus of continuity.

Orlicz space is a large space of measurable functions that is important to
study. Many generalizations are made to Orlicz spaces, such as, Orlicz-
Lorentz [1], Quasi-Orlicz [2], Besov-Orlicz [3] and others. An Orlicz function

is defined as a non-negative convex function with ∅ (0) = 0, and limt→0+
φ(t)
t

=
limt→∞

t
φ(t)

= 0. Also, define the outer function Ψφ (f) =
∫ α

0
φ (f ∗) dµ.

Many extensions were studied by several authors, such as, Orlicz-Lorentz
[1], that is defined as {f measurable, Ψφ (λf) <∞, for some λ > 0}, and
Luxemburg norm [4] is given by

‖f‖φ = inf
λ>0

{

Ψφ

(

f

λ

)

≤ 1

}

, (0.1)
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In [3], authors define the space of Besov-Orlicz B
ωµ,v

φ,∞ in terms of modulus of
continuity, as a Banach functions subspace of C [0, 1] with the norm

‖f‖
ωµ,v

φ,∞ = ‖f‖φ + sup
0<t≤1

(

ωφ (f, t)

ωµ,v

)

(0.2)

where

ωφ (f, t) = sup
0≤h≤t

(∆′
h (f))φ , ωµ,v (t) = tµ

(

1 + log

(

1

t

))v

(x)

(0.3)

and ∆′
h (f (x)) = [f (x+ h)− f (x)] , for any x ∈ [0, 1− h] , 0 < µ < 1 and

v > 0. For any r ∈ N0, we use the symbol Πr to define the space of algebraic
polynomials of degree less than r, and we put ‖P‖ = supx P (x), where P ∈
Πr. Define the best approximation of functions f ∈ B

ωµ,V

φ,∞ to the space Πr is
the polynomial p∗ ∈ Πr that satisfies Er,φ (f) = ‖f − p∗‖φ = infp∈Πr

(f − p),
where we denote Er,φ (f) to be the degree of best approximation of a function
f ∈ B

ωµ,V

φ,∞ by a polynomial p∗ of degree at most r.
This paper deals mainly with a class of continuous piecewise polynomi-

als, called splines [5], that are Sr (yn) . Sr (yn) is the space of all splines
of degree r with knots yn = (yi)

n

0 ,−1 = y0 < y1 < . . . < yn−1 <

yn = 1, s ∈ Sr (yn) if s ∈ Πr on the (yi, yi+1) , i = 0, · · · , n − 1. Let
yn= {y0, · · · , yn| − 1 = y0 < y1 < . . . < yn=1} be a partition of [−1, 1]. Also,
let Jj= [yj, yj+1] with yj=− 1, j < 0, and yj=1, j > n.

1 Auxiliary Results

In this section, we present some useful lemmas for our work.

Lemma 1.1. (Remez inequality)[5] For any q ∈ Πr and a set A s.t.
meas{[−1, 1] \ A} ≤ s ≤ 1

2
, then ‖q‖C[−1,1] ≤ e5n

√
s‖q‖C[A].

Lemma 1.2. Any spline s from Sr that satisfies ψφ (s) ≤ k, where φ is
bounded, implies ‖s‖

ωµ,V

φ,∞ is bounded.

Proof.
From definition, it is enough to prove that ‖s‖φ is bounded. Since φ is convex
bounded Orlicz function, then

∫

I

φ (|λs (x)|) dx ≤ φ |λ|

∫

I

φ (|s (x)|) dx ≤ φ (|λ|) k ≤M

For some M = max {1 + φ (|λ|) k, k} implies ‖s‖
ωµ,V

φ,∞ ≤M .
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2 Main Results

Now, we are ready to prove that the best approximation of splines and/or
polynomials exists, direct theorem is given as follow

Theorem 2.1. Let zn be the Chebychev partition of I into n subinterval,
such that |Ij | ∼ 1

n
. Also, let f ∈ B

ωµ,V

φ,∞ , if there is a bounded spline
s ∈ Sr (zn) , s.t. ‖f − s‖I ≤ cωφ(f, t), then there is a polynomial pn ∈ Πn,

that satisfies
‖f − pn‖I ≤ ωφ(f, t).

Proof.
Define pn ∈ Πn (Ij) , for some j = 1, 2, . . . , n such that ‖s − pn‖Ij ≤
ωφ(f, t)Ij , then by Lemma 1.1. and Lemma 1.2,

‖f − pn‖I ≤ ‖f − s‖I + ‖s− pn‖I

≤ ωφ

(

f,
1

n

)

+ ‖s− qn‖I + ‖qn − pn‖I

≤ ωφ

(

f,
1

n

)

+ C‖s− qn‖Ij + C‖qn − pn‖Ij

≤ Cωφ

(

f,
1

n

)

Now, we study the lower bound of the degree of best approximation

Theorem 2.2. Let f ∈ B
ωµ,V

φ,∞ , then ωφ

(

f, 1
n

)

≤ cEn,φ (f)

Proof.
Define each polynomial in Ij, j = 0, 1, · · · , n as qn,j ∈ Πn (Ij) , as follow
qn,n − qn,0 = qn,n − qn,n−1 + (qn,n−1 − qn, n−2) + · · ·+ (qn,1 − qn, 0).

For some m ≤ n, suppose that ‖qn,n − qn,m‖φ ≤ Em,φ (f)
By Theorem 2 and Lemma 1.2, we have

ωφ

(

f,
1

n

)

≤ ωφ

(

f − qn,
1

n

)

+ ωφ

(

qn,
1

n

)

≤ C‖f − qn‖φ + ωφ

(

qn,
1

n

)

≤ C‖f − qn‖φ + ωφ

(

qn,n − qn,n−1,
1

n

)

≤ C

(

ωφ

(

f,
1

n

)

+

n
∑

m=2

(m+ 1)Em,φ (f)

)

≤ CEn,φ (f)
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3 Conclusions

This paper dealt with constructing and finding a best approximation from
the space of polynomials and/or splines. The space of study was the Besov-
Orlicz space. The modulus of continuity was used to estimate the degree of
best approximation for both upper and lower bounds.
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