International Journal of Mathematics and Computer Science, **20**(2025), no. 1, 139–142 DOI: https://doi.org/10.69793/ijmcs/01.2025/khalidah

Best Spline Approximation in Besov-Orlicz Space

Khalidah Abdulhussein Al-Ogaili, Hawraa Abbas Almurieb

Department of Mathematics College of Education for Pure Sciences University of Babylon Hillah, Iraq

email: khalidaa918@gmail.com, pure.hawraa.abbas@uobabylon.edu.iq

(Received July 3, 2024, Revised July 29, 2024, Accepted August 5, 2024, Published August 6, 2024)

Abstract

Orlicz spaces have got the attention of many researchers over the decades. Many spaces have been defined in terms of Orlicz spaces, in particular Besov-Orlicz spaces. In this paper, we discuss this class of spaces with modulus of continuity. We study the best approximation of Besov-Orlicz spaces with splines and polynomials. The degree of best approximation depends on modulus of continuity.

Orlicz space is a large space of measurable functions that is important to study. Many generalizations are made to Orlicz spaces, such as, Orlicz-Lorentz [1], Quasi-Orlicz [2], Besov-Orlicz [3] and others. An Orlicz function is defined as a non-negative convex function with $\emptyset(0) = 0$, and $\lim_{t\to 0^+} \frac{\phi(t)}{t} =$ $\lim_{t\to\infty} \frac{t}{\phi(t)} = 0$. Also, define the outer function $\Psi_{\phi}(f) = \int_0^{\alpha} \phi(f^*) d\mu$. Many extensions were studied by several authors, such as, Orlicz-Lorentz [1], that is defined as $\{f \text{ measurable}, \Psi_{\phi}(\lambda f) < \infty, \text{ for some } \lambda > 0\}$, and Luxemburg norm [4] is given by

$$\|f\|_{\phi} = \inf_{\lambda>0} \left\{ \Psi_{\phi}\left(\frac{f}{\lambda}\right) \le 1 \right\}, \qquad (0.1)$$

Key words and phrases: Functional Analysis, Modulus of Continuity, Besov-Orlicz, Spline.

AMS (MOS) Subject Classifications: 03F10, 03B45. ISSN 1814-0432, 2025, https://future-in-tech.net In [3], authors define the space of Besov-Orlicz $B_{\phi,\infty}^{\omega_{\mu,v}}$ in terms of modulus of continuity, as a Banach functions subspace of C[0,1] with the norm

$$\|f\|_{\phi,\infty}^{\omega_{\mu,v}} = \|f\|_{\phi} + \sup_{0 < t \le 1} \left(\frac{\omega_{\phi}(f,t)}{\omega_{\mu,v}}\right)$$
(0.2)

where

$$\omega_{\phi}\left(f,t\right) = \sup_{0 \le h \le t} \left(\Delta_{h}'\left(f\right)\right)_{\phi}, \omega_{\mu,v}\left(t\right) = t^{\mu} \left(1 + \log\left(\frac{1}{t}\right)\right)_{(x)}^{v} \tag{0.3}$$

and $\Delta'_h(f(x)) = [f(x+h) - f(x)]$, for any $x \in [0, 1-h]$, $0 < \mu < 1$ and v > 0. For any $r \in \mathbb{N}_0$, we use the symbol Π_r to define the space of algebraic polynomials of degree less than r, and we put $||P|| = \sup_x P(x)$, where $P \in \Pi_r$. Define the best approximation of functions $f \in B^{\omega_{\mu,V}}_{\phi,\infty}$ to the space Π_r is the polynomial $p^* \in \Pi_r$ that satisfies $E_{r,\phi}(f) = ||f - p^*||_{\phi} = \inf_{p \in \Pi_r} (f - p)$, where we denote $E_{r,\phi}(f)$ to be the degree of best approximation of a function $f \in B^{\omega_{\mu,V}}_{\phi,\infty}$ by a polynomial p^* of degree at most r.

This paper deals mainly with a class of continuous piecewise polynomials, called splines [5], that are $S_r(y_n)$. $S_r(y_n)$ is the space of all splines of degree r with knots $y_n = (y_i)_0^n$, $-1 = y_0 < y_1 < \ldots < y_{n-1} < y_n = 1, s \in S_r(y_n)$ if $s \in \Pi_r$ on the $(y_i, y_{i+1}), i = 0, \cdots, n-1$. Let $y_n = \{y_0, \cdots, y_n | -1 = y_0 < y_1 < \ldots < y_n = 1\}$ be a partition of [-1, 1]. Also, let $J_j = [y_j, y_{j+1}]$ with $y_j = -1, j < 0$, and $y_j = 1, j > n$.

1 Auxiliary Results

In this section, we present some useful lemmas for our work.

Lemma 1.1. (*Remez inequality*)[5] For any $q \in \Pi_r$ and a set A s.t. $meas\{[-1, 1] \setminus A\} \le s \le \frac{1}{2}$, then $\|q\|_{C[-1,1]} \le e^{5n\sqrt{s}} \|q\|_{C[A]}$.

Lemma 1.2. Any spline s from S_r that satisfies $\psi_{\phi}(s) \leq k$, where ϕ is bounded, implies $\|s\|_{\phi,\infty}^{\omega_{\mu,V}}$ is bounded.

Proof.

From definition, it is enough to prove that $||s||_{\phi}$ is bounded. Since ϕ is convex bounded Orlicz function, then

$$\int_{I} \phi\left(\left|\lambda s\left(x\right)\right|\right) dx \le \phi\left|\lambda\right| \int_{I} \phi\left(\left|s\left(x\right)\right|\right) dx \le \phi\left(\left|\lambda\right|\right) k \le M$$

For some $M = \max \{1 + \phi(|\lambda|) k, k\}$ implies $||s||_{\phi,\infty}^{\omega_{\mu,V}} \le M \square$.

140

2 Main Results

Now, we are ready to prove that the best approximation of splines and/or polynomials exists, direct theorem is given as follow

Theorem 2.1. Let z_n be the Chebychev partition of I into n subinterval, such that $|I_j| \sim \frac{1}{n}$. Also, let $f \in B_{\phi,\infty}^{\omega_{\mu,V}}$, if there is a bounded spline $s \in S_r(z_n)$, s.t. $||f - s||_I \leq c\omega_{\phi}(f, t)$, then there is a polynomial $p_n \in \Pi_n$, that satisfies

$$||f - p_n||_I \le \omega_\phi(f, t).$$

Proof.

Define $p_n \in \Pi_n(I_j)$, for some $j = 1, 2, \ldots, n$ such that $||s - p_n||_{I_j} \leq \omega_{\phi}(f, t)_{I_j}$, then by Lemma 1.1. and Lemma 1.2,

$$\begin{split} \|f - p_n\|_I &\leq \|f - s\|_I + \|s - p_n\|_I \\ &\leq \omega_\phi \left(f, \frac{1}{n}\right) + \|s - q_n\|_I + \|q_n - p_n\|_I \\ &\leq \omega_\phi \left(f, \frac{1}{n}\right) + C\|s - q_n\|_{I_j} + C\|q_n - p_n\|_{I_j} \\ &\leq C\omega_\phi \left(f, \frac{1}{n}\right) \quad \Box \end{split}$$

Now, we study the lower bound of the degree of best approximation

Theorem 2.2. Let $f \in B_{\phi,\infty}^{\omega_{\mu,V}}$, then $\omega_{\phi}\left(f,\frac{1}{n}\right) \leq cE_{n,\phi}\left(f\right)$

Proof.

Define each polynomial in I_j , $j = 0, 1, \cdots, n \text{ as } q_{n,j} \in \prod_n (I_j)$, as follow $q_{n,n} - q_{n,0} = q_{n,n} - q_{n,n-1} + (q_{n,n-1} - q_{n,n-2}) + \cdots + (q_{n,1} - q_{n,0}).$

For some $m \leq n$, suppose that $||q_{n,n} - q_{n,m}||_{\phi} \leq E_{m,\phi}(f)$

By Theorem 2 and Lemma 1.2, we have

$$\begin{aligned} \omega_{\phi}\left(f,\frac{1}{n}\right) &\leq \omega_{\phi}\left(f-q_{n},\frac{1}{n}\right) + \omega_{\phi}\left(q_{n},\frac{1}{n}\right) \\ &\leq C\|f-q_{n}\|_{\phi} + \omega_{\phi}\left(q_{n},\frac{1}{n}\right) \\ &\leq C\|f-q_{n}\|_{\phi} + \omega_{\phi}\left(q_{n,n}-q_{n,n-1},\frac{1}{n}\right) \\ &\leq C\left(\omega_{\phi}\left(f,\frac{1}{n}\right) + \sum_{m=2}^{n}\left(m+1\right)E_{m,\phi}\left(f\right)\right) \\ &\leq CE_{n,\phi}\left(f\right) \quad \Box \end{aligned}$$

3 Conclusions

This paper dealt with constructing and finding a best approximation from the space of polynomials and/or splines. The space of study was the Besov-Orlicz space. The modulus of continuity was used to estimate the degree of best approximation for both upper and lower bounds.

References

- D. E. Ferreyra, M. I. Gareis, F. E. Levis, Extended best polynomial approximation operator in Orlicz-Lorentz spaces, Mathematische Nachrichten, 295, no. 7, (2022), 1292–1311.
- [2] A. M. Al-Janabi, H. A. Almurieb, Convolutional Neural Networks Approximation in Quasi-Orlicz Spaces on Spheres, Journal of Kufa for Mathematics and Computer, 11, no. 1, (2024), 1–5.
- [3] S. Aissa, Tightness in Besov-Orlicz spaces: Characterization and applications, Random Operators and Stochastic Equations, 24, no. 3, (2016), 157–164.
- [4] W. A. J. Luxemburg, Banach function spaces, Thesis, Technische Hogeschool te Delft, (1955).
- [5] Y. K. Hu, K.A. Kopotun, X.M. Yu, Constrained approximation in Sobolev spaces, Canadian Journal of Mathematics, 49, no. 1, (1997), 74–99.