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Abstract

In a finite buffer queuing system, the congestion mostly occurs
due to the higher blocking probability. In this article, the author has
presented a Modified Bulk Service (MBS) rule for the finite buffer
queueing system under assumptions that the server can accept a cus-
tomer during ongoing service if serving batch size is lower; however,
the time spent in serving the lower batch size is elapsed. Various
performance metrics are discussed.

1 Introduction and Model Description
In the study of queueing models ‘bulk service queue’ playing a vital role.
Various bulk service rule are available in the literature [1, 2, 3], etc. Baily
[1] was the first to introduce the bulk service queue with fixed batch size,
there after GBS rule ([2]) comes in literature under two threshold limits of
batch size under assumption that when a service is initiated no customer can
join during ongoing service, leads to the higher blocking probability if buffer
space is finite. To overcome this congestion, one proposed the Modified Bulk
Service (MBS) rule. In MBS rule, the service capacity is allowed to change
in between the serving batch (if serving a batch of size< b) when an arrival
occurs, however, the (incomplete) time spent in serving the lower batch size is
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elapsed. Further, if there is no customer in queue, and the server is busy with
a batch of size ′r(< b)‘, and in between an arrival occurs then the server is
capable of deciding whether not to include (with probability p) or to include
(with probability q = 1−p) the new arrival in the ongoing batch service, and
serve the new batch size of ‘r+1′ customers. When system is full and server
is busy in serving lower batch size can start serving the higher batch size if
more arrivals. The recent literature with MBS rule can be found in infinite
buffer setup only [5, 6]. For the finite buffer, denote M/G(a→b)/1/N as [5].

2 Steady State Analysis
Customers arrives according to Poisson process with rate λ and service time
is generally distributed. The modified bulk service (a → b) rule directs the
server to serve a batch. System size is N + b. Let S(.) be the i.i.d. service
time of a batch, with probability density function (pdf) s(.), Laplace-Stieltjes
transform (LST) s∗(.) and mean service time s̃. Consider at time t, Nq(t) ≡
queue length, and Ns(t) ≡ server content during busy period.

2.1 Joint probability distributions at arbitrary epoch
and departure epoch

Consider U(t), the remaining service time, and define the joint probabilities,
at time t: Pn,0(t) ≡ prob.{Nq(t) = n, Ns(t) = 0}; 0 ≤ n ≤ a − 1, and
Pn,r(x, t)dx ≡ prob.{Nq(t) = n, Ns(t) = r, x ≤ U(t) ≤ x + dx}; 0 ≤ n ≤
N , a ≤ r ≤ b, and in steady state: lim

t→∞

Pn,0 (t) = Pn,0; 0 ≤ n ≤ a − 1,

and lim
t→∞

Pn,r (x, t) = Pn,r(x); 0 ≤ n ≤ N, a ≤ r ≤ b. In similar fashion,

define the steady state joint probabilities at departure epoch p+n,r and p+n ≡
∑b

r=a p
+
n,r (0 ≤ n ≤ N). Analyzing the Kolmogrov equations one can obtain

the following closed form expression of joint probabilities. We deduce that

p+n,r = σPn,r(0), 0 ≤ n ≤ N, a ≤ r ≤ b. (2.1)

where σ−1 =
∑N

n=0

∑b

r=a
Pn,r(0) is the value of the proportionality constant

and is found in following theorem.

Theorem 2.1. The value of σ as appeared in (2.1), is given by

σ−1 =

N
∑

n=0

b
∑

r=a

Pn,r(0) =
1−

∑a−1
n=0Pn,0 −

∑b−1
r=a

[

λPN,rs̃+ λP
∗(1)
N,r (0) + qλP0,rs̃+ qλP

∗(1)
0,r (0)

]

∑N
n=0p

+
n s̃

,

(2.2)
where,

∑b
r=ap

+
n,r = p+n , P

∗

n,r(θ) and s∗(0) = s̃ represent the LST of Pn,r(x) and

S(x), respectively and P
∗(1)
n,r (θ) represents its first derivative .



Reduction of Congestion in Data Transfer... 413

Proof. The steps are similar to that of [4].

Theorem 2.2. The steady state probabilities P0,r, Pn,r, and PN,r; 0 ≤ n ≤
N, a ≤ r ≤ b, are given in terms of p+n and p+n,r as follows:

P0,a = (λσ)−1

(

a
∑

i=0

p+i − p+0,a

)

, 0 ≤ n ≤ a− 1, (2.3)

P0,r = (λσ)−1

[

r−a−1
∑

i=0

qi

(

a
∑

i=0

p+r−i − p+0,r−i

)

+ qr−a

(

a
∑

i=0

p+i − p+0,a

)]

, a+ 1 ≤ r ≤ b, (2.4)

Pn,a = (λσ)−1

[

p

(

a
∑

i=0

p+i − p+0,a

)

−

n
∑

i=1

p+i,a

]

, 1 ≤ n ≤ N − 1, (2.5)

Pn,r = (λσ)−1p

{

r−a−1
∑

i=0

qi
(

p+r−i − p+0,r−i

)

+ qr−a

(

a
∑

i=0

p+i − p+0,a

)}

−(λσ)−1
n
∑

i=1

p+i,r, a+ 1 ≤ r ≤ b− 1, 1 ≤ n ≤ N − 1, (2.6)

Pn,b = P0,b + (λσ)−1

(

n
∑

i=1

b
∑

r=a

p+b+i,r −

n
∑

i=1

p+i,b

)

, 1 ≤ n ≤ N − b, (2.7)

Pn,b = P0,b + (λσ)−1

(

N−b
∑

i=1

b
∑

r=a

p+b+i,r −

n
∑

i=1

p+i,b

)

, N − b+ 1 ≤ n ≤ N − 1, (2.8)

PN,a = (λσ)−1

[

p

(

a
∑

i=0

p+i − p+0,a

)

−
N
∑

i=1

p+i,a

]

, (2.9)

PN,r = (λσ)−1p

r
∑

k=a+1

{

k−a−1
∑

i=0

qi
(

p+k−i − p+0,k−i

)

+ qk−a

(

a
∑

i=0

p+i − p+0,a

)}

+(λσ)−1

{

p

(

a
∑

i=0

p+i − p+0,a

)

−
N
∑

i=1

p+i

}

, a+ 1 ≤ r ≤ b− 1. (2.10)

PN,b = λPN,b−1s̃− λP
∗(1)
N−1,b(0) (2.11)

Proof. The steps are similar to that of [4].

{Nq(ti), Ns(ti)} will constitute a 2-D Markov chain with state space
{(n, r) : 0 ≤ n ≤ N, a ≤ r ≤ b}. Define
π = (π+

0 , π
+
1 , ..., π

+
N) and π+

n = (p+n,a, p
+
n,a+1, ..., p

+
n,b). Once p+n,r are obtained,

Pn,r are known. Here, p+n,r can be obtained by solving πP = π, where P is
the transition probability matrix, of dimension N(b− a+1)×N(b− a+1).
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3 Performance measure
Average server content: Ls =

∑b

r=a

∑N

n=0rPn,r/
∑N

n=0

∑b

r=aPn,r; Average

queue length: Lq =
∑a−1

n=0 n
(

Pn,0 +
∑b

r=a Pn,r

)

+
∑N

n=a

∑b

r=a nPn,r; Aver-

age system length:
L =

∑a−1
n=0 nPn,0 +

∑N+a

n=a

∑min(b,n)
r=a nPn−r,r +

∑N+b

n=N+a+1

∑b

r=n−N nPn−r,r; Us-
ing the Little’s law, average waiting in queue (Wq) = Lq/λ̄ and in the system
(W ) = L/λ̄, where λ̄ is the effective arrival rate, given by λ̄ = λ (1− PB);
and the blocking probability, is given by, PB = PN,b.

4 Conclusion
In this article, author has successfully obtained the joint probability distri-
bution of queue length and server content at arbitrary epoch in terms of
departure epoch for a finite buffer bulk service queue where server renders
the service using MBS rule. Comparing the expression of blocking probabil-
ity of the existing bulk service rules, it is established the fact that using MBS
rule the blocking probability can be reduced, which can reduce congestion.
Correlated arrivals under MBS rule would be further extension of this work.
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