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Abstract

This paper presents the division polynomials for the Holm curve

and a few of their properties. One of the main properties being the n

torsion points for a given Holm curve.

1 Introduction

Let p be a prime number and K = Fp be the finite field with p elements not
of characteristic 2 or 3. It is well known that an elliptic curve can be defined
by using its Weierstrass equation:

W : Y 2 = X3 + aX + b

where a, b ∈ K, and there is an extra point O at infinity. The division
polynomials Ψn ∈ Z[X, Y, a, b] for the curve are defined recursively, for n,m ∈
N as shown:

Key words and phrases: Elliptic curve, Division polynomial, Holm.
AMS (MOS) Subject Classifications: 11G07, 14H52.
ISSN 1814-0432, 2025, https://future-in-tech.net



292 G. Alberto

Ψ0(X, Y ) = 0

Ψ1(X, Y ) = 1

Ψ2(X, Y ) = 2Y

Ψ3(X, Y ) = 3X4 + 6aX2 + 12bX − a2

Ψ4(X, Y ) = 4Y (X6 + 5aX4 + 20bX3 − 5a2X2 − 4abX − a3 − 8b2)

Ψ2m+1(X, Y ) = Ψm+2Ψ
3
m −Ψm−1Ψ

3
m+1 for m ≥ 2

Ψ2m(X, Y ) =
Ψm

Ψ2

(

Ψm+2Ψ
2
m−1 −Ψm−2Ψ

2
m+1

)

for m ≥ 3.

We abbreviate the notation so that Ψn = Ψn(x, y). The curve itself has
group properties with the point at infinity, O, as the identity element. Here,
we can use these division polynomials to find the coordinates of the point
nP for an n ∈ N and P = (x, y) ∈ W by using the multiplication-by-n map
[n] : W →W .

[n](X, Y ) =

(

XΨ2
n −Ψn−1Ψn+1

Ψ2
n

,
Ψ2n

2Ψ4
n

)

Using the division polynomials we have that (X, Y ) is an n-torsion point
of W (i.e. [n](X, Y ) = O) if and only if Ψn(X, Y ) = 0. (see [6], Chapter 1 of
[2], Chapter 3 of [8], and Chapter 3 of [10])

In this paper, we will show analogous results for the Holm Curve. We
will use (X, Y ) to refer to an equation in Weierstrass form and reserve (x, y)
when we are referring to the Holm curve.

2 The Holm Curve

The Holm curve is defined by:

Ha,b : by(y
2 − 1) = ax(x2 − 1)

where a, b ∈ K, ab 6= 0, a 6= ±b. Putting λ =
a

b
we rewrite the curve as

Hλ : y
3 − y = λ(x3 − x)

where λ 6= 0,±1. This is the form we will use when referring to the Holm
curve.
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Investigating the points at infinity, we see they occur when z = 0 in
the projective space. The points at infinity are (1,

3
√
λ, 0). If ρ = 3

√
1 and

3
√
λ ∈ K, then the three points at infinity are (1 : ρ 3

√
λ : 0), (1 : ρ2 3

√
λ : 0)

and (1 :
3
√
λ : 0). Furthermore, the curve is an elliptic curve and the points

(0, 0), (0,±1), (±1, 0) and (±1,±1) are contained in Hλ for all possible λ.

2.1 Group structure

The points on the curve can be added under the following operation: Let
P = (x1, y1), Q = (x2, y2) ∈ Hλ where P 6= Q. Then we define P + Q = R

and R = (x3, y3) where

x3 =
3(x2 − x1)(y2 − y1)

2y1 − 3(y2 − y1)
3x1

(y2 − y1)3 − (x2 − x1)3λ
+ x1 + x2

y3 =
3λ(x2 − x1)

3y1 − 3λ(x2 − x1)
2(y2 − y1)x1

(y2 − y1)3 − (x2 − x1)3λ
+ y1 + y2

Under this operation the curve forms an abelian group with the point O =
(0, 0) as its identity. The additive inverse of the point (x, y) ∈ Hλ is (−x,−y).

2.2 Bi-rational mapping

The curve is also bi-rationally equivalent to the elliptic curve with Weierstrass
equation

Eλ : Y
2 −X3 + 3λ2X − λ2(λ2 + 1) = 0

under the rational mapping

(x, y) 7→
(

λ(x− λy)

λx− y
,
λ(1− λ2)

λx− y

)

= (X, Y )

(X, Y ) 7→
(

X − λ2

Y
,
λ(X − 1)

Y

)

= (x, y)

with the addition of mapping origin (0, 0) ∈ Hλ to origin (0, 1, 0) ∈ Eλ where
λ ∈ K and λ 6= 0,±1.
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2.3 Function Fields

Theorem 1. Consider the Holm curve

Hλ : y
3 − y = λ

(

x3 − x
)

.

Let the function field K (Hλ) = K (x, y) . Then

a. [K (x, y) : K (x)] = 3,

b. every element f (x, y) ∈ K (x, y) can be written uniquely as

f (x, y)= A1 (x) +yB1 (x) +y2C1 (x)

where A1 (x) , B1 (x) , C1 (x) are rational functions in K (x).

Proof. It is enough to show that in K (x) [T ] , T indeterminate, the polyno-
mial

T 3 − T − λx3 + λx

is irreducible. If it were not irreducible, it would have a factor of degree

one, hence, it would have a root in K (x). Let
f (x)

g (x)
be such a root, where

f (x) and g (x) are in K [x] and we may assume that their GCD in K [x] is
1. Plugging in the root forces g (x) = 1, the polynomial f (x) satisfies

(f (x))3 − f (x) = λx (x− 1) (x+ 1) .

In K [x] , this equation gives the expansion of (f (x))3−f (x) as a product
of irreducible polynomials. Since char (K) 6= 2, the three factors on the right
hand side are distinct.

Looking at the degrees of both sides leads to

deg (f (x)) = 1

hence

f (x) = ax+ b

for a, b ∈ K. We find

(ax+ b) (ax+ b− 1) (ax+ b+ 1) = λx (x− 1) (x+ 1) .

By uniqueness of the decomposition into a product of irreducible factors we
obtain
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{ax+ b, ax+ b− 1, ax+ b+ 1} = {λx, x− 1, x+ 1}.

Taking into consideration all the possibilities will lead to a contradiction in
each case. Hence T 3 − T − λx3 + λx is irreducible in K (x) [T ] .

As y is a root of this polynomial, [K(x, y) : K (x)] = 3 and {1, y, y2} is a
basis for K (x, y) over K (x).

Theorem 2. Consider the Weierstrass model

Eλ : Y
2 = X3 − 3λ2X + λ2(λ2 + 1)

Let the function field K (Eλ) = K (X, Y ). Then

a. [K (X, Y ) : K (X)] = 2,

b. every element g (X, Y ) ∈ K (X, Y ) can be written uniquely as

g (X, Y ) = A2 (X) + Y B2 (X)

where A2 (X) , B2 (X) are rational function in K (X).

Proof. It is enough to show that in K (X) [T ], T indeterminate, the polyno-
mial

T 2 −X3 + 3λ2X − λ2(λ2 + 1)

is irreducible. If it were not, then X3 − 3λ2X + λ2(λ2 + 1) would be a
square in K [X ] . A degree consideration leads to a contradiction.

As Y is a root of this polynomial, [K (X, Y ) : K (X)] = 2 and {1, Y } is a
basis for K (X, Y ) over K (X).

3 Multi-Variable Division Rational Functions

In order to form the division polynomials for Hλ we need to use the division
polynomials for an Elliptic curve in the Weierstrass form, and the bi-rational
correspondence between the curve Eλ and Hλ. We define the following ra-
tional functions ψn(x, y) recursively for n ≥ 0:
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ψ0(x, y) := 0

ψ1(x, y) := 1

ψ2(x, y) :=
2λ(1− λ2)

λx− y

ψ3(x, y) :=
3λ4(x− λy)4

(λx− y)4
− 18λ4(x− λy)2

(λx− y)2

+
12λ3(λ2 + 1)(x− λy)

λx− y
− 9λ4

ψ4(x, y) :=
4λ7(1− λ2)(x− λy)6

(λx− y)7
− 60λ7(1− λ2)(x− λy)4

(λx− y)5

+
80λ6(1− λ4)(x− λy)3

(λx− y)4
− 180λ7(1− λ2)(x− λy)2

(λx− y)3

+
48λ6(1− λ4)(x− λy)

(λx− y)2
+

108λ7(1− λ2)

λx− y

−32λ5(λ2 + 1)2(1− λ2)

λx− y

ψ2m+1(x, y) := ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2

ψ2m(x, y) :=
ψm

ψ2

(

ψm+2ψ
2
m−1 − ψm−2ψ

2
m+1

)

for m ≥ 3.

Let’s call these functions the division rational functions. The notation
can be abbreviated just as with Ψn, by letting ψn = ψn(x, y). Notice these
functions are not defined at the point (0, 0)).

We can factor the division rational functions. Doing so we obtain a quo-
tient multiplied by a polynomial in terms of x and y. Let’s call these poly-
nomials the multi-variable division polynomials, as defined in the following
theorem.

Theorem 3. The multi-variable division polynomials, denoted ψ̃n, are de-
fined by

ψn =
λk(n)ψ̃n

(λx− y)m(n)
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where

m(n) =











n2 − 2

2
if n is even

n2 − 1

2
if n is odd

k(n) =

⌈

n2 − 1

3

⌉

and

ψ̃0(x, y) = 0

ψ̃1(x, y) = 1

ψ̃2(x, y) = 2(1− λ2)

ψ̃3(x, y) = 3λ(x− λy)4 − 18λ(x− λy)2(λx− y)2

+12(λ2 + 1)(x− λy)(λx− y)3 − 9λ(λx− y)4

ψ̃4(x, y) = 4λ2(1− λ2)(x− λy)6 − 60λ2(1− λ2)(x− λy)4(λx− y)2

+80λ(1− λ4)(x− λy)3(λx− y)3

−180λ2(1− λ2)(x− λy)2(λx− y)4

+48λ(1− λ4)(x− λy)(λx− y)5

+108λ2(1− λ2)(λx− y)6 − 32(λ2 + 1)2(1− λ2)(λx− y)6

and

ψ̃2r =















ψ̃r

ψ̃2

(ψ̃r+2ψ̃
2
r−1 − ψ̃r−2ψ̃

2
r+1) if r ≡ 0, 3 mod 6, r ≥ 3

ψ̃r

ψ̃2

(λψ̃r+2ψ̃
2
r−1 − ψ̃r−2ψ̃

2
r+1) if r ≡ 1, 4 mod 6, r ≥ 4

ψ̃r

ψ̃2

(ψ̃r+2ψ̃
2
r−1 − λψ̃r−2ψ̃

2
r+1) if r ≡ 2, 5 mod 6, r ≥ 5

and

ψ̃2r+1 =



































λ(λx− y)2ψ̃r+2ψ̃
3
r − ψ̃r−1ψ̃

3
r+1 if r ≡ 0 mod 6, r ≥ 6

ψ̃r+2ψ̃
3
r − (λx− y)2ψ̃r−1ψ̃

3
r+1 if r ≡ 1 mod 6, r ≥ 7

(λx− y)2ψ̃r+2ψ̃
3
r − λψ̃r−1ψ̃

3
r+1 if r ≡ 2 mod 6, r ≥ 2

λψ̃r+2ψ̃
3
r − (λx− y)2ψ̃r−1ψ̃

3
r+1 if r ≡ 3 mod 6, r ≥ 3

(λx− y)2ψ̃r+2ψ̃
3
r − ψ̃r−1ψ̃

3
r+1 if r ≡ 4 mod 6, r ≥ 4

ψ̃r+2ψ̃
3
r − λ(λx− y)2ψ̃r−1ψ̃

3
r+1 if r ≡ 5 mod 6, r ≥ 5

Proof. First observe that for all t ∈ Z, t > 0,
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m(6t) = 18t2 − 1

m(6t± 1) = 18t2 ± 6t

m(6t± 2) = 18t2 ± 12t+ 1

m(6t± 3) = 18t2 ± 18t+ 4

k(6t) = 12t2

k(6t± 1) = 12t2 ± 4t

k(6t± 2) = 12t2 ± 8t+ 1

k(6t± 3) = 12t2 ± 12t+ 3

m(12t) = = 72t2 − 1

m(12t± 1) = 72t2 ± 12t

m(12t± 2) = 72t2 ± 24t+ 1

m(12t± 3) = 72t2 ± 36t+ 4

m(12t± 4) = 72t2 ± 48t+ 7

m(12t± 5) = 72t2 ± 60t+ 12

m(12t+ 6) = 72t2 + 72t+ 17

k(12t) = 48t2

k(12t± 1) = 48t2 ± 8t

k(12t± 2) = 48t2 ± 16t+ 1

k(12t± 3) = 48t2 ± 24t+ 3

k(12t± 4) = 48t2 ± 32t+ 5

k(12t± 5) = 48t2 ± 40t+ 8

k(12t+ 6) = 48t2 + 48t+ 12

This proof is by induction. We see that it is true for n = 1, 2, 3, 4. Assume
it is true for all values up to the n− 1 case.

Case 1: Let n ≡ 0 mod 12, n = 12l for some l ∈ Z, and r = 6l. By definition
we have:

ψn =
ψr

ψ2

(

ψr+2ψ
2
r−1 − ψr−2ψ

2
r+1

)

=
λk(r)−1ψ̃r

(λx− y)m(r)−1ψ̃2

(

λk(r+2)+2k(r−1)ψ̃r+2ψ̃
2
r−1

(λx− y)m(r+2)+2m(r−1)
− λk(r−2)+2k(r+1)ψ̃r−2ψ̃

2
r+1

(λx− y)m(r−2)+2m(r+1)

)

=
ψ̃r

ψ̃2

(

λk(r)−1+k(r+2)+2k(r−1)ψ̃r+2ψ̃
2
r−1

(λx− y)m(r)−1+m(r+2)+2m(r−1)
− λk(r)−1+k(r−2)+2k(r+1)ψ̃r−2ψ̃

2
r+1

(λx− y)m(r)−1+m(r−2)+2m(r+1)

)
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Notice,

k(6l)− 1 + k(6l + 2) + 2k(6l − 1) = 12l2 − 1 + 12l2 + 8l + 1 + 24l2 − 8l

= 48l2 = k(12l) = k(n)

k(6l)− 1 + k(6l − 2) + 2k(6l + 1) = 12l2 − 1 + 12l2 − 8l + 1 + 24l2 + 8l

= 48l2 = k(12l) = k(n)

and

m(6l)− 1 +m(6l + 2) + 2m(6l − 1) = 18l2 − 1− 1 + 18l2 + 12l + 1 + 36l2 − 12l

= 72l2 − 1 = m(12l) = m(n)

m(6l)− 1 +m(6l − 2) + 2m(6l + 1) = 18l2 − 1− 1 + 18l2 − 12l + 1 + 36l2 + 12l

= 72l2 − 1 = m(12l) = m(n)

Thus,

ψn(x, y) =
λk(n)

(λx− y)m(n)

[

ψ̃r

ψ̃2

(ψ̃r+2ψ̃
2
r−1 − ψ̃r−2ψ̃

2
r+1)

]

=
λk(n)ψ̃2r

(λx− y)m(n)
=

λk(n)ψ̃n

(λx− y)m(n)

Case 2: Let n ≡ 1 mod 12, n = 12l + 1 for some l ∈ Z, and r = 6l. By
definition we have:

ψn(x, y) = ψr+2ψ
3
r − ψr−1ψ

3
r+1

=
λk(r+2)+3k(r)ψ̃r+2ψ̃

3
r

(λx− y)m(r+2)+3m(r)
− λk(r−1)+3k(r+1)ψ̃r−1ψ̃

3
r+1

(λx− y)m(r−1)+3m(r+1)

Notice,

k(6l + 2) + 3k(6l) = 12l2 + 8l + 1 + 36l2

= 48l2 + 8l + 1 = k(12l + 1) + 1 = k(n) + 1

k(6l − 1) + 3k(6l + 1) = 12l2 − 4l + 36l2 + 12l

= 48l2 + 8l = k(12l + 1) = k(n)
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and

m(6l + 2) + 3m(6l) = 18l2 + 12l + 1 + 54l2 − 3

= 72l2 + 12l − 2 = m(12l + 1)− 2 = m(n)− 2

m(6l − 1) + 3m(6l + 1) = 18l2 − 6l + 54l2 + 18l

= 72l2 + 12l = m(12l + 1) = m(n)

Thus,

ψn(x, y) =
λk(n)

(λx− y)m(n)

(

λ(λx− y)2ψ̃r+2ψ̃
3
r − ψ̃r−1ψ̃

3
r+1

)

=
λk(n)ψ̃2r+1

(λx− y)m(n)
=

λk(n)ψ̃n

(λx− y)m(n)

Case 3, . . . 12: n ≡ 2, . . . 11 mod 12. Similar.

Also, these equations are in fact, polynomials.

Theorem 4. ψ̃n(x, y) ∈ Z[λ, x, y], ∀n ≥ 0 and 2(1 − λ2) divides ψ̃n(x, y) if
n is even.

Proof. Here notice

ψ̃0 = 0

ψ̃1 = 1

ψ̃2 = 2(1− λ2)

ψ̃3 = 3λ(x− λy)4 − 18λ(x− λy)2(λx− y)2

+12(λ2 + 1)(x− λy)(λx− y)3 − 9λ(λx− y)4

ψ̃4 = 2(1− λ2)













2λ2(x− λy)6 − 30λ2(x− λy)4(λx− y)2

+40λ(1 + λ2)(x− λy)3(λx− y)3

−90λ2(x− λy)2(λx− y)4

+24λ(1 + λ2)(x− λy)(λx− y)5

+54λ2(λx− y)6 − 16(λ2 + 1)2(λx− y)6













Thus the statement is true for n = 0, 1, 2, 3, 4. Suppose it is true for
values up to n− 1.
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Case 1: Let n ≡ 0 mod 12, n = 12l for some l ∈ Z, and r = 6l.

Thus, ψ̃n = ψ̃r

2(1−λ2)
(ψ̃r+2ψ̃

2
r−1 − ψ̃r−2ψ̃

2
r+1).

By hypothesis ψ̃r, ψ̃r+2, ψ̃r−1, ψ̃r−2, ψ̃r+1 ∈ Z[λ, x, y] and 2(1 − λ2) divides
ψ̃r, ψ̃r+2 and ψ̃r−2. Thus ψ̃n ∈ Z[λ, x, y] and is divisible by 2(1− λ2).

Case 2: Let n ≡ 1 mod 12, n = 12l + 1 for some l ∈ Z, and r = 6l.
Thus, ψ̃n = λ(λx− y)2ψ̃r+2ψ̃

3
r − ψ̃r−1ψ̃

3
r+1.

By hypothesis ψ̃r+2, ψ̃r, ψ̃r−1, ψ̃r+1 ∈ Z[λ, x, y]. Thus, ψ̃n ∈ Z[λ, x, y].

Case 3, . . . 12: n ≡ 2, . . . 11 mod 12. Similar.

4 Properties of Multi-Variable Division Ra-

tional Functions

Using the multi-variable division rational functions, we can find what nP
equals for a point P ∈ Hλ and n ∈ N.

Theorem 5. Let (x,y) be a point in Hλ(Fp)\{(0, 0)} and n ≥ 1 be an integer.
Then

[n](x, y) = (xα− ω, yα− λω)

where:

α =
2λ(1− λ2)ψ4

n

(λx− y)ψ2n

ω =
2ψn−1ψ

2
nψn+1

ψ2n

Proof. We know for an elliptic curve of Weierstrass form: Y 2 = X3+aX+ b,

[n](X, Y ) =

(

XΨ2
n −Ψn−1Ψn+1

Ψ2
n

,
Ψ2n

2Ψ4
n

)

Here Ψn are the division polynomials. Let [n](X, Y ) = (Xn, Yn). Once again
we can use our bi-rational correspondence to determine the coordinates of
[n](x, y) = (xn, yn) in our Holm curve. We know that Eλ is bi-rationally
equivalent to Hλ. As we substituted our values for a, b,X and Y in the
division polynomials for the Weierstrass equation, we have that Ψi(X, Y ) =
ψi(x, y) for i = 0, 1, 2, 3, 4. Also as they have the same recursion formulas for
i ≥ 5, we have that Ψn(X, Y ) = ψ(x, y). Thus,

Xn = X − Ψn−1Ψn+1

Ψ2
n

, Yn =
Ψ2n

2Ψ4
n
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is equivalent to

Xn = X − ψn−1ψn+1

ψ2
n

, Yn =
ψ2n

2ψ4
n

We apply this to our substitution equations from Hλ to Eλ;

x =
X − λ2

Y
y =

λ(X − 1)

Y

and from Eλ to Hλ;

X =
λ(x− λy)

λx− y
Y =

λ(1− λ2)

λx− y

to obtain:

xn =
Xn − λ2

Yn
=

2ψ4
n

ψ2n

[

λ(x− λy)

λx− y
− ψn−1ψn+1

ψ2
n

− λ2
]

=
2ψ4

n

ψ2n

[

λx− λ3x

λx− y
− ψn−1ψn+1

ψ2
n

]

=
2ψ2

n

ψ2n

[

(λ− λ3)xψ2
n

λx− y
− ψn−1ψn+1

]

= x

(

2λ(1− λ2)ψ4
n

(λx− y)ψ2n

)

− 2ψn−1ψ
2
nψn+1

ψ2n

= xα− ω

yn =
λ(Xn − 1)

Yn
=

2ψ4
n

ψ2n

[

λ2(x− λy)

λx− y
− λψn−1ψn+1

ψ2
n

− λ

]

=
2ψ4

n

ψ2n

[−λ3y + λy

λx− y
− λψn−1ψn+1

ψ2
n

]

=
2ψ4

n

ψ2n

[

(λ− λ3)y

λx− y
− λψn−1ψn+1

ψ2
n

]

= y

(

2λ(1− λ2)ψ4
n

(λx− y)ψ2n

)

− λ

(

2ψn−1ψ
2
nψn+1

ψ2n

)

= yα− λω

Finally showing,
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[n](x, y) = (xα− ω, yα− λω).

Corollary 1. Let P = (x, y) be in Hλ(Fp)\{(0, 0)} and let n ≥ 3. P is an
n-torsion point of Hλ if and only if ψn(P ) = 0.

Proof. We use:

ψ2n(x, y) =
ψn

ψ2

(

ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1

)

for n ≥ 3

xn =
2ψ2

n

ψ2n

[

(λ− λ3)xψ2
n

λx− y
− ψn−1ψn+1

]

yn =
2ψ2

n

ψ2n

[

(λ− λ3)yψ2
n

λx− y
− λψn−1ψn+1

]

Suppose ψn(P ) = 0. Plugging in ψ2n into xn and yn, we obtain:

xn =
2ψ2ψn

ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1

[

(λ− λ3)xψ2
n

λx− y
− ψn−1ψn+1

]

yn =
2ψ2ψn

ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1

[

(λ− λ3)yψ2
n

λx− y
− λψn−1ψn+1

]

Thus as ψn = 0 we have that n[x, y] = (xn, yn) = (0, 0).

Now let [n](x, y) = (xn, yn) = (0, 0). Investigating ψ2 we know that
λx− y 6= 0 as (x, y) 6= (0, 0). Also as λ 6= 0,±1; ψ2 is non-zero.

Suppose ψn 6= 0. We have that:

0 =
(λ− λ3)xψ2

n

λx− y
− ψn−1ψn+1

0 =
(λ− λ3)yψ2

n

λx− y
− λψn−1ψn+1

Solving for ψn−1ψn+1 in the second equation we obtain:

ψn−1ψn+1 =
(λ− λ3)yψ2

n

λ(λx− y)
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Plugging this into the first equation we obtain:

0 =
(λ− λ3)xψ2

n

λx− y
− (λ− λ3)yψ2

n

λ(λx− y)

= ψ2
n

(

(λ− λ3)x

λx− y
− (λ− λ3)y

λ(λx− y)

)

= ψ2
n

(

λ− λ3

λx− y

)

(

x− y

λ

)

Now

ψ2
n 6= 0,

λ− λ3

λx− y
6= 0 =⇒

(

x− y

λ

)

= 0

If
(

x− y

λ

)

= 0 we have x = y

λ
. Plugging this into Hλ : 0 = y3− y− λx3 + λx

we obtain (1 − 1
λ2
)y3 = 0 and y = 0. We obtain that (x, y) = (0, 0), a

contradiction.
We must have that ψn = 0. Thus [n](x, y) = (0, 0) if and only if ψn = 0.

Using these multi-variable division polynomials we can once again find
the torsion points.

Corollary 2. Let P = (x, y) be in Hλ(Fp)\{(0, 0)} and let n ≥ 3. P is an
n-torsion point of Hλ if and only if ψ̃n(P ) = 0.

Proof. This result follows from Corollary 1 and Theorem 3.
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