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Abstract

The exact percentage points of the likelihood ratio statistic for
testing the hypothesis that two p-variate normal distributions are
independent and their covariance matrices are equal have been computed
for p =2, 3, 4 and 5.

1 Introduction

Suppose that the 2p x 1 random vector X has a multivariate normal distribu-
tion with mean vector p and covariance matrix X and that X, p and X are
. Y %

partitioned as X = (X} X3)', p= (¢} ph) and ¥ = 211 212

21 2422
X, and p; are p x 1 and ¥;; is p X p, 1,7 = 1,2. Consider testing the null
hypothesis H that the subvectors X, and X, are independent and covariance
matrices of these sub-vectors are equal. That is, H : X153 = 0,X1] = X9y = A
against the alternative H, that H is not true. In H, the common covariance

, Where
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matrix A is unspecified. While extending the circular symmetric model to
the case where the symmetries are exhibited in blocks, Olkin [9] defined H
and called it block sphericity hypothesis. Testing X1 = Yoo = A under
the assumption of independence of multivariate Gaussian distributions is
commonly known as Bartlett’s test and has been studied and applied in a
variety of areas.

Let A be the sample sum of squares and product matrix formed from a
sample of size N = n + 1. Partition A as A = (4;;), where A4;; is p X p,
i,j = 1,2. The likelihood ratio statistic for testing H (Thomas [10], Cardeno
and Nagar [3]) is given by

2PN det(A)N?
det (An + A22)N

The A™ null moment of V = A is given as

" oh h—i—n—z—i—l)/Q] Cln—(i—1)/2]
BV =2 H{ /2] }E{r[hm—(z—l)/z]}'“‘”

The exact non-null distribution of A under two specific alternatives has
been derived by Gupta and Chao [5] . The asymptotic null distribution
of —2In A is chi-square with p(3p + 1)/2 d.f. The null distribution of A%/*
in series involving Bernoulli polynomials, is available in [4]. The exact null
distribution of A is available in [3].

In this article, we compute the percentage points of the test statistic
V = AYN for testing H. Since the exact distribution is available in [3] and the
technique is well known (Gupta, Nagar and Gémez [6], Nagar and Gupta [7],
Nagar and Zarrazola [8], Zarrazola, Moran-Vasquez and Nagar [11]), we will
outline main steps of the derivation and give the final result, deleting all the
details of derivations. The exact percentage points of V' for p = 2(1)5 are
computed using the exact distribution given in this article.

2 The exact density of V

By using the duplication formula for gamma function the Ath moment of V'
is rewritten as

P (D(h+n—2p— 1+ 2i)
B! 11{ Mhtn—(i—1)/2 } (22)
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where

K(n,p) = H{Fr[n_ = 1)/2] } (2.3)

1 (D(n—2p—1+2i)

Now, the density function of V' = A" denoted by f(v), is obtained by
taking inverse Mellin transform of E(V") as

fv) = (2m)™" /L EWVMv™""1dh, 0 <v < 1, (2.4)

where ¢+ = +/—1 and L is a suitable contour. Using (2.2) in (2.4) and
substituting h +n — 2p = t, one gets

P D(t+2i—1) L
U rprg— b & 9

1=1

£(v) = K(n,p)o™ (27 0) " /

L
where 0 < v < 1, L; is the changed contour and K (n,p) is defined in (2.3).
Next, we give explicit expressions for the density of V' for particular values
of p by evaluating the integral in (2.5) with the help of the residue theorem
and simplifying resulting expressions by using properties of gamma, psi and
zeta functions (Apostol [1], Askey and Roy [2]).
From (2.5), the density for p = 2 is obtained as

I'(t+1)
(t+3)T(t+7/2)

fv) = K(n,2)v"*(2n L)_l/ vt 0 < v < 1.

Ly
The integrand has simple poles at t = —r, r =1,2,4, ..., and a pole of order
two at t = —3. Evaluating residues at these poles, simplifying resulting
expressions and applying the residue theorem, the density f(v) is obtained
as

flo) = K(n, 20" {_ %T:%?’) (rr_(q)_! (i/i)g)“r+ {g - (%)} ﬁ“g] ’
(2.6)

where 0 < v < 1. For p = 3, (2.5) simplifies to

T(t+1)

B M

f(v) = K(n, 3)1)"_7(27TL)_1/L

where 0 < v < 1. The integrand has simple poles at t = —r, r =1,2,6,7, ..,
and poles of order two at t = —r, r = 3,4,5. Evaluating residues at these
poles and using the residue theorem, the density in this case is obtained as
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 K(n,3) -] 2 4 , 1/8 vy 5 171 v\ 4
J(v) = v {ﬁ”‘?s” —5(Grmy)t - 5(grmy)

‘*%(%‘hl) E:r—l T;?m®@—5ﬂﬂ’
(

where 0 < v < 1. For p =4, (2.5) reduces to

D(t+ DI(t + 3) »
Ly [ st + )T (t + 15/2)T(t + 13/2)

fv) = K(n,4)v" % (2m1)~!

The integrand has simple poles at t = —1, —2, poles of order two at t = —r,
r=3,4,8,9,..., and poles of order three at t = —r, r = 5,6,7. Evaluating
residues at these poles and using residue theorem, we get the density for
p=4as

2 1 2521
= K(n, 4" | —— - e ) o
f(U) (n, )U [660 F2(17) 270 Fz(g) 168 pz(%) < 420 n 16) v
+i{ Ly 3L) T, 178 —2l}
90Ia(g YT Ber L\ 16 T 12 144~ 372

121 vz 33 272y o7
By 52

200 3

)
127 v 2+_31769 _.%E_}
360w 3600 3 J2

6' 27

2

+;Z{¢<>+w<y—2>
7

b))
L —11/2)I'(G — 13/2)
=G =3)'G =50 -6)G—7)
For p =5, (2.5) slides to

v]}, O<v<l. (2.8)

T(t+ D)0t + 3) Lt

f(v) = K(n,5)v" 1 (2r )" . ngs(t + 7))l (t+ 17/2)T(t +19/2)

Y

where a5 = ag = ag = ag = 1 and a7y = 2. The integrand has simple poles at
t = —1,—2, poles of order 2 at t = —r, r = 3,4,10, 11, ..., poles of order 3
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at t = —5, —6, —8,—9 and a pole of order 4 at t = —7. Evaluating residues
at these poles and using residue theorem, the density is derived as

f(v) = K(n, 5)?}"_11 [Ago)’u + Ago)vz + (—Inv+ Béo))Ago)v?’

+ (v +BMAP Y {(—1nv+3§0>)2+3§1>}A§0>%
r=56,8,9
7
0 1 0) (1 2 0)v
+ {(—lnv +B7) + 3~ lnv) B 4380 BY + P} AV
+Z —Inv+ B©)AO)y ’},O<’u<1, (2.9)
r=10
0 (0) 0 _ 1 0 _
where A}” = 10)'F2 15/2)° Ay 65(7)'r2 13/2)° Ay 14(6)TZ(11/2)° By” =
5219 0) _ (0) _ _ 1691 0) _ 5
o3 +1n(16), A7 = ()'F2(9/2) By 5y +1n(16), A57 = ®)T2(7/2)
(0) _ _ 569 (1) __ 1202849 22 0) _ 0 _
B 05 T1n(16), By = S5 — 5 Ag = ()'F2(5/2) Bg
69 (1) _ 10969 27r2 0) _ 7 (0)
—5 T In(16), Bg" = T — 5, A7 = 2(9)!F2(3/2) By’ — % + In(16),
1 - 2) 0 0
B 20 B i a0 B0 %1
(1) _ 911681 27r 0) _ 1 (0) _ 4831 (1) __ 488573  2nm2
By’ = S50 Ay = A6 , By = Fig TIn(16), By = 755500 — 5
o C(r— 15/2)F(r 17/2) o 9
AT = = ey A and By = (r) +(r —2) + 3, 5a;(r —

j)_l - w(r - 125) w(r - 127)'

3 Computation

The computation of the exact percentage points has been carried out by
using the CDF F(v,p) = [ f(t) dt where f(t) is given by (2.6), (2.7), (2.8)
and (2.9). The CDF F(v,p) for p = 2,3,4,5 is obtained by integrating term
by term these density functions. For each p, F'(v,p) is computed for various
values of v to check the monotonicity and conditions such as F(v,p) — 0 as
v — 0 and F(v,p) - 1 as v — 1. Then, v is computed for p = 2,3,4,5.
These are given in Table 1. We have used MATHEMATICA 12.0 to carry
out these computations. To compute v for given value of a = F(v,p), we
have used FindRoot which searches for a numerical solution to the given
equation using Newton’s method or a variant of the secant method. A six
place accuracy has been kept throughout. Tables are given for p = 2, 3,4, 5.
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Percentage points of V for p = 2 Percentage points of V for p = 3
n\a 0.01 0.025 0.05 0.1 n\a 0.01 0.025 0.05 0.1

4 0.0027 0.0067 0.0136 0.0278 6 0.0009 0.0023 0.0046  0.0095

5 0.0350 0.0565 0.0820 0.1205 7 0.0135 0.0221 0.0325 0.0488

6 0.0907 0.1265 0.1641 0.2152 8 0.0394 0.0559 0.0738 0.0993

7 0.1520 0.1966 0.2406  0.2973 9 0.0726 0.0958 0.1196  0.1515

8 0.2111 0.2607 0.3077 0.3661 10 0.1090 0.1373 0.1653  0.2016

9 0.2654 0.3174 0.3655 0.4238 11 0.1460 0.1782 0.2091  0.2482
10 0.3144 0.3673 0.4153 0.4724 12 0.1823 0.2172 0.2501  0.2909
11  0.3582 0.4111 0.4583 0.5138 13 0.2172 0.2540 0.2881  0.3299
12 0.3973 0.4497 0.4958 0.5494 14 0.2502 0.2883 0.3231  0.3653
13 0.4324 0.4838 0.5286  0.5802 15 0.2813 0.3202 0.3553  0.3975
14 0.4638 0.5141  0.5575 0.6072 16 0.3104 0.3497 0.3850  0.4269
15 0.4922 0.5411 0.5832 0.6310 17 0.3377 0.3772 0.4123  0.4537
16 0.5178 0.5655 0.6061  0.6521 18 0.3632 0.4026 0.4374 0.4783
17 0.5411 0.5874 0.6267 0.6710 19 0.3870 0.4262 0.4606  0.5009
18 0.5623 0.6073 0.6453  0.6879 20 0.4093 0.4481 0.4821 0.5216
19 0.5817 0.6253 0.6621 0.7032 21 0.4301 0.4686 0.5020 0.5408
20  0.5995 0.6419 0.6775 0.7171 22 0.4497 0.4876  0.5206 0.5585
21  0.6158 0.6570 0.6915 0.7297 23 0.4680 0.5054 0.5378  0.5750
22 0.6309 0.6709 0.7043 0.7413 24 0.4852 0.5221 0.5539  0.5903
23  0.6449 0.6838 0.7162 0.7519 25 0.5014 0.5377 0.5689  0.6046
24 0.6579 0.6957 0.7271 0.7617 26 0.5166 0.5524 0.5830 0.6179
25 0.6700 0.7068 0.7372 0.7707 27 0.5310 0.5662 0.5962  0.6304
26 0.6812 0.7170 0.7466 0.7791 28 0.5446 0.5792 0.6086 0.6421
27 0.6918 0.7266 0.7554  0.7869 29 0.5574 0.5914 0.6203 0.6531
28 0.7016 0.7356  0.7636  0.7942 30 0.5696 0.6030 0.6314 0.6634

29 0.7109 0.7440 0.7712 0.8010
30 0.7196 0.7519 0.7784 0.8074

Percentage points of V for p =4 Percentage points of V for p =5
n\a 0.01 0.025 0.05 0.1 n\a 0.01 0.025 0.05 0.1

8 0.0003 0.0008 0.0017 0.0035 10 0.0001 0.0003 0.0006 0.0013

9 0.0054 0.0089 0.0132 0.0201 11  0.0022 0.0036 0.0054 0.0084
10 0.0171 0.0247 0.0331 0.0453 12 0.0074 0.0108 0.0147 0.0204
11  0.0342 0.0458 0.0580 0.0749 13 0.0159 0.0215 0.0276  0.0363
12 0.0548 0.0702 0.0857 0.1066 14 0.0269 0.0350 0.0433  0.0547
13  0.0776  0.0963 0.1147 0.1387 15 0.0401 0.0505 0.0609 0.0748
14 0.1017 0.1231 0.1438 0.1703 16 0.0549 0.0674 0.0798  0.0959
15 0.1262 0.1499 0.1725 0.2010 17 0.0709 0.0853 0.0994 0.1175
16  0.1507 0.1763 0.2004  0.2303 18 0.0876  0.1038 0.1194 0.1392
17 0.1749 0.2020 0.2272  0.2583 19 0.1048 0.1226 0.1395 0.1608
18 0.1985 0.2268 0.2529  0.2848 20 0.1222 0.1414 0.1594 0.1819
19 0.2214 0.2506 0.2774  0.3098 21 0.1397 0.1601 0.1791  0.2026
20 0.2434 0.2734 0.3006  0.3334 22 0.1570 0.1785 0.1983  0.2227
21 0.2647 0.2952 0.3227 0.3557 23 0.1742 0.1965 0.2171  0.2421
22 0.2850 0.3160 0.3437 0.3767 24 0.1911 0.2142 0.2353  0.2609
23 0.3045 0.3357 0.3635 0.3965 25 0.2077 0.2314 0.2530 0.2791
24 0.3232 0.3545 0.3824 0.4153 26 0.2238 0.2481 0.2701  0.2965
25 0.3411 0.3725 0.4002  0.4330 27 0.2396 0.2643 0.2866  0.3133
26  0.3581 0.3895 0.4172  0.4497 28 0.2549 0.2801 0.3026  0.3295
27 0.3744 0.4058 0.4333 0.4655 29 0.2699 0.2953 0.3180 0.3450
28 0.3900 0.4213 0.4486  0.4805 30 0.2843 0.3100 0.3328  0.3600

29  0.4050 0.4360 0.4632  0.4947
30 04192 0.4501 0.4770 0.5082

Table 1: percentage points of V for p = 2,3,4 and 5.



