

Independence and equality of covariance matrices of two multivariate normal distributions

Johanna Orozco-Castañeda, Edwin Zarrazola, Daya K. Nagar

Instituto de Matemáticas Universidad de Antioquia Calle 67, No. 53–108 Medellín, Colombia

email: johanna.orozco@udea.edu.co, edwin.zarrazola@udea.edu.co, dayaknagar@yahoo.com

(Received September 12, 2024, Accepted November 17, 2024, Published November 21, 2024)

Abstract

The exact percentage points of the likelihood ratio statistic for testing the hypothesis that two p-variate normal distributions are independent and their covariance matrices are equal have been computed for p = 2, 3, 4 and 5.

1 Introduction

Suppose that the $2p \times 1$ random vector \boldsymbol{X} has a multivariate normal distribution with mean vector $\boldsymbol{\mu}$ and covariance matrix Σ and that \boldsymbol{X} , $\boldsymbol{\mu}$ and Σ are partitioned as $\boldsymbol{X} = \begin{pmatrix} \boldsymbol{X}_1' & \boldsymbol{X}_2' \end{pmatrix}'$, $\boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_1' & \boldsymbol{\mu}_2' \end{pmatrix}'$ and $\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$, where \boldsymbol{X}_i and $\boldsymbol{\mu}_i$ are $p \times 1$ and Σ_{ij} is $p \times p$, i, j = 1, 2. Consider testing the null hypothesis H that the subvectors \boldsymbol{X}_1 and \boldsymbol{X}_2 are independent and covariance matrices of these sub-vectors are equal. That is, $H: \Sigma_{12} = 0, \Sigma_{11} = \Sigma_{22} = \Delta$ against the alternative H_a that H is not true. In H, the common covariance

Key words and phrases: Block sphericity, covariance matrix, distribution, test criterion, null moments, inverse Mellin transform, percentage points, residue theorem.

AMS (MOS) Subject Classifications: 62H10, 62H15. ISSN 1814-0432, 2025, https://future-in-tech.net

matrix Δ is unspecified. While extending the circular symmetric model to the case where the symmetries are exhibited in blocks, Olkin [9] defined H and called it block sphericity hypothesis. Testing $\Sigma_{11} = \Sigma_{22} = \Delta$ under the assumption of independence of multivariate Gaussian distributions is commonly known as Bartlett's test and has been studied and applied in a variety of areas.

Let A be the sample sum of squares and product matrix formed from a sample of size N = n + 1. Partition A as $A = (A_{ij})$, where A_{ij} is $p \times p$, i, j = 1, 2. The likelihood ratio statistic for testing H (Thomas [10], Cardeño and Nagar [3]) is given by

$$\Lambda = \frac{2^{pN} \det(A)^{N/2}}{\det(A_{11} + A_{22})^{N}}.$$

The $h^{\rm th}$ null moment of $V=\Lambda^{1/N}$ is given as

$$E(V^h) = 2^{ph} \prod_{i=1}^{2p} \left\{ \frac{\Gamma[(h+n-i+1)/2]}{\Gamma[(n-i+1)/2]} \right\} \prod_{i=1}^{p} \left\{ \frac{\Gamma[n-(i-1)/2]}{\Gamma[h+n-(i-1)/2]} \right\}. (1.1)$$

The exact non-null distribution of Λ under two specific alternatives has been derived by Gupta and Chao [5]. The asymptotic null distribution of $-2 \ln \Lambda$ is chi-square with p(3p+1)/2 d.f. The null distribution of $\Lambda^{2/N}$, in series involving Bernoulli polynomials, is available in [4]. The exact null distribution of Λ is available in [3].

In this article, we compute the percentage points of the test statistic $V = \Lambda^{1/N}$ for testing H. Since the exact distribution is available in [3] and the technique is well known (Gupta, Nagar and Gómez [6], Nagar and Gupta [7], Nagar and Zarrazola [8], Zarrazola, Morán-Vásquez and Nagar [11]), we will outline main steps of the derivation and give the final result, deleting all the details of derivations. The exact percentage points of V for p = 2(1)5 are computed using the exact distribution given in this article.

2 The exact density of V

By using the duplication formula for gamma function the hth moment of V is rewritten as

$$E(V^h) = K(n,p) \prod_{i=1}^{p} \left\{ \frac{\Gamma(h+n-2p-1+2i)}{\Gamma[h+n-(i-1)/2]} \right\},$$
 (2.2)

where

$$K(n,p) = \prod_{i=1}^{p} \left\{ \frac{\Gamma[n - (i-1)/2]}{\Gamma(n - 2p - 1 + 2i)} \right\}.$$
 (2.3)

Now, the density function of $V = \Lambda^{1/N}$, denoted by f(v), is obtained by taking inverse Mellin transform of $E(V^h)$ as

$$f(v) = (2\pi\iota)^{-1} \int_{L} E(V^{h}) v^{-h-1} dh, \ 0 < v < 1,$$
 (2.4)

where $\iota = \sqrt{-1}$ and L is a suitable contour. Using (2.2) in (2.4) and substituting h + n - 2p = t, one gets

$$f(v) = K(n,p)v^{n-2p-1}(2\pi \iota)^{-1} \int_{L_1} \left\{ \prod_{i=1}^p \frac{\Gamma(t+2i-1)}{\Gamma[t+2p-(i-1)/2]} \right\} v^{-t} dt, \quad (2.5)$$

where 0 < v < 1, L_1 is the changed contour and K(n, p) is defined in (2.3).

Next, we give explicit expressions for the density of V for particular values of p by evaluating the integral in (2.5) with the help of the residue theorem and simplifying resulting expressions by using properties of gamma, psi and zeta functions (Apostol [1], Askey and Roy [2]).

From (2.5), the density for p = 2 is obtained as

$$f(v) = K(n,2)v^{n-5}(2\pi \iota)^{-1} \int_{L_1} \frac{\Gamma(t+1)}{(t+3)\Gamma(t+7/2)} v^{-t} dt, \ 0 < v < 1.$$

The integrand has simple poles at t = -r, r = 1, 2, 4, ..., and a pole of order two at t = -3. Evaluating residues at these poles, simplifying resulting expressions and applying the residue theorem, the density f(v) is obtained as

$$f(v) = K(n,2)v^{n-5} \left[-\frac{1}{\pi} \sum_{r=1(\neq 3)}^{\infty} \frac{\Gamma(r-5/2)}{(r-1)!(r-3)} v^r + \left\{ \frac{3}{2} - \ln\left(\frac{v}{4}\right) \right\} \frac{1}{2\sqrt{\pi}} v^3 \right], \tag{2.6}$$

where 0 < v < 1. For p = 3, (2.5) simplifies to

$$f(v) = K(n,3)v^{n-7}(2\pi\iota)^{-1} \int_{L_1} \frac{\Gamma(t+1)}{(t+5)(t+4)(t+3)\Gamma(t+11/2)} v^{-t} dt,$$

where 0 < v < 1. The integrand has simple poles at t = -r, $r = 1, 2, 6, 7, \ldots$, and poles of order two at t = -r, r = 3, 4, 5. Evaluating residues at these poles and using the residue theorem, the density in this case is obtained as

$$f(v) = \frac{K(n,3)}{\sqrt{\pi}} v^{n-7} \left[\frac{2}{315} v - \frac{4}{45} v^2 - \frac{1}{3} \left(\frac{8}{3} + \ln \frac{v}{4} \right) v^3 - \frac{1}{3} \left(\frac{1}{6} + \ln \frac{v}{4} \right) v^4 + \frac{1}{48} \left(\frac{43}{12} - \ln \frac{v}{4} \right) v^5 - \frac{1}{\sqrt{\pi}} \sum_{r=6}^{\infty} \frac{\Gamma(r-9/2)}{(r-1)! (r-3)(r-4)(r-5)} v^r \right],$$
(2.7)

where 0 < v < 1. For p = 4, (2.5) reduces to

$$f(v) = K(n,4)v^{n-9}(2\pi\iota)^{-1} \int_{L_1} \frac{\Gamma(t+1)\Gamma(t+3)}{\prod_{i=5}^{7} (t+j)\Gamma(t+15/2)\Gamma(t+13/2)} v^{-t} dt.$$

The integrand has simple poles at t = -1, -2, poles of order two at t = -r, $r = 3, 4, 8, 9, \ldots$, and poles of order three at t = -r, r = 5, 6, 7. Evaluating residues at these poles and using residue theorem, we get the density for p = 4 as

$$f(v) = K(n,4)v^{n-9} \left[\frac{v}{660 \Gamma^{2}(\frac{11}{2})} - \frac{v^{2}}{270 \Gamma^{2}(\frac{9}{2})} - \frac{1}{168 \Gamma^{2}(\frac{7}{2})} \left(\frac{2521}{420} + \ln \frac{v}{16} \right) v^{3} \right]$$

$$- \frac{1}{90 \Gamma^{2}(\frac{5}{2})} \left(\frac{71}{15} + \ln \frac{v}{16} \right) v^{4} + \frac{1}{36\pi} \left\{ \left(\ln \frac{v}{16} + \frac{31}{12} \right)^{2} + \frac{1781}{144} - \frac{2\pi^{2}}{3} \right\} \frac{v^{5}}{2}$$

$$- \frac{1}{360\pi} \left\{ \left(\frac{127}{60} - \ln \frac{v}{16} \right)^{2} + \frac{31769}{3600} - \frac{2\pi^{2}}{3} \right\} \frac{v^{6}}{2}$$

$$- \frac{15}{2(6!)^{2}\pi} \left\{ \left(\frac{121}{30} - \ln \frac{v}{16} \right)^{2} + \frac{33}{200} - \frac{2\pi^{2}}{3} \right\} \frac{v^{7}}{2}$$

$$+ \frac{1}{\pi^{2}} \sum_{j=8}^{\infty} \left\{ \psi(j) + \psi(j-2) \right\}$$

$$+ \sum_{i=5}^{7} \frac{1}{j-i} - \psi \left(j - \frac{13}{2} \right) - \psi \left(j - \frac{11}{2} \right) - \ln v \right\}$$

$$\frac{\Gamma(j-11/2)\Gamma(j-13/2)}{(j-1)!(j-3)! (j-5)(j-6)(j-7)} v^{j}, 0 < v < 1. \tag{2.8}$$

For p = 5, (2.5) slides to

$$f(v) = K(n,5)v^{n-11}(2\pi \iota)^{-1} \int_{L_1} \frac{\Gamma(t+1)\Gamma(t+3)}{\prod_{j=5}^9 (t+j)^{a_j} \Gamma(t+17/2)\Gamma(t+19/2)} v^{-t} dt,$$

where $a_5 = a_6 = a_8 = a_9 = 1$ and $a_7 = 2$. The integrand has simple poles at t = -1, -2, poles of order 2 at t = -r, $r = 3, 4, 10, 11, \ldots$, poles of order 3

at t = -5, -6, -8, -9 and a pole of order 4 at t = -7. Evaluating residues at these poles and using residue theorem, the density is derived as

$$f(v) = K(n,5)v^{n-11} \left[A_1^{(0)}v + A_2^{(0)}v^2 + (-\ln v + B_3^{(0)})A_3^{(0)}v^3 + (-\ln v + B_4^{(0)})A_4^{(0)}v^4 + \sum_{r=5,6,8,9} \left\{ (-\ln v + B_r^{(0)})^2 + B_r^{(1)} \right\} A_r^{(0)} \frac{v^r}{2} + \left\{ (-\ln v + B_7^{(0)})^3 + 3(-\ln v)B_7^{(1)} + 3B_7^{(0)}B_7^{(1)} + B_7^{(2)} \right\} A_7^{(0)} \frac{v^7}{3!} + \sum_{r=10}^{\infty} (-\ln v + B_r^{(0)})A_r^{(0)}v^r \right], 0 < v < 1,$$

$$(2.9)$$

where
$$A_1^{(0)} = \frac{12}{(10)!\Gamma^2(15/2)}, A_2^{(0)} = -\frac{4}{65(7)!\Gamma^2(13/2)}, A_3^{(0)} = \frac{1}{44(6)!\Gamma^2(11/2)}, B_3^{(0)} = -\frac{5219}{693} + \ln(16), A_4^{(0)} = \frac{2}{27(6)!\Gamma^2(9/2)}, B_4^{(0)} = -\frac{1691}{252} + \ln(16), A_5^{(0)} = \frac{5}{(8)!\Gamma^2(7/2)}, B_5^{(0)} = -\frac{569}{105} + \ln(16), B_5^{(1)} = \frac{1202849}{88200} - \frac{2\pi^2}{3}, A_6^{(0)} = -\frac{1}{15(6)!\Gamma^2(5/2)}, B_6^{(0)} = -\frac{69}{20} + \ln(16), B_6^{(1)} = \frac{10969}{720} - \frac{2\pi^2}{3}, A_7^{(0)} = \frac{7}{2(9)!\Gamma^2(3/2)}, B_7^{(0)} - \frac{2}{15} + \ln(16), B_7^{(1)} = \frac{24947}{1800} - \frac{2\pi^2}{3}, B_7^{(2)} = 24\zeta(3) - \frac{1504261}{54000}, A_8^{(0)} = \frac{1}{3(5)!(7)!\pi}, B_8^{(0)} = \frac{989}{210} + \ln(16), B_8^{(1)} = \frac{911681}{88200} - \frac{2\pi^2}{3}, A_9^{(0)} = \frac{1}{4(8)!(6)!(4)!\pi}, B_9^{(0)} = \frac{4831}{840} + \ln(16), B_9^{(1)} = \frac{488573}{705600} - \frac{2\pi^2}{3}, A_7^{(0)} = -\frac{\Gamma(r-15/2)\Gamma(r-17/2)}{\pi^2(r-1)!(r-3)!} \prod_{j=5}^9 (r-j)^{a_j} \text{ and } B_r^{(0)} = \psi(r) + \psi(r-2) + \sum_{j=5}^9 a_j(r-j)^{-1} - \psi(r-\frac{15}{2}) - \psi(r-\frac{17}{2}).$$

3 Computation

The computation of the exact percentage points has been carried out by using the CDF $F(v,p) = \int_0^v f(t) dt$ where f(t) is given by (2.6), (2.7), (2.8) and (2.9). The CDF F(v,p) for p=2,3,4,5 is obtained by integrating term by term these density functions. For each p, F(v,p) is computed for various values of v to check the monotonicity and conditions such as $F(v,p) \to 0$ as $v \to 0$ and $F(v,p) \to 1$ as $v \to 1$. Then, v is computed for p=2,3,4,5. These are given in Table 1. We have used MATHEMATICA 12.0 to carry out these computations. To compute v for given value of v0 and v1 is equation using Newton's method or a variant of the secant method. A six place accuracy has been kept throughout. Tables are given for v1 and v2 is a place accuracy has been kept throughout. Tables are given for v2 is a place accuracy has been kept throughout.

Acknowledgments: This research was supported by the Comité para el Desarrollo de la Investigación, Universidad de Antioquia research grant no. 2023-66291.

References

- [1] T. M. Apostol, Zeta and related functions, NIST Handbook of Mathematical Functions. Edited by Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert and Charles W. Clark, U. S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010.
- [2] R. A. Askey, R. Roy, Gamma function, NIST Handbook of Mathematical Functions. Edited by Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert and Charles W. Clark, U. S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010.
- [3] Liliam Cardeño, Daya K. Nagar, Testing block sphericity of a covariance matrix, *Divulg. Mat.*, **9**, no. 1, (2001), 25–34.
- [4] C. C. Chao, A. K. Gupta, Testing of homogeneity of diagonal blocks with blockwise independence, *Comm. Statist. Theory Methods*, **20**, (1991), no. 7, 1957–1969.
- [5] A. K. Gupta, C. C. Chao, Nonnull distribution of the likelihood ratio criterion for testing the equality of diagonal blocks with blockwise independence, *Acta Math. Sci.*, **14**, (1994), 195–203.
- [6] Arjun K. Gupta, Daya K. Nagar, Armando Gómez, Percentage points of LRC for testing equality of covariance matrices under intraclass correlation structure, *Comm. Stat. Simulation Comput.*, **46**, no. 5, (2017), 3855–3869.
- [7] D. K. Nagar, A. K. Gupta, Percentage points for testing homogeneity of several univariate Gaussian populations, *Appl. Math. Comput.*, **156**, (2004), no. 2, 551–561.
- [8] Daya K. Nagar, Edwin Zarrazola, Percentage points for testing homogeneity of covariance matrices of several bivariate Gaussian populations, *Int. J. Math. Comput. Sci.*, **16**, no. 2, (2021), 597–605.
- [9] I. Olkin, Testing and estimation for structures which are circular symmetric in blocks, *Multivariate Statistical Inference*, (D. G. Kabe, R. P. Gupta, eds.), North-Holland, (1973), 183–195.

- [10] D. Roland Thomas, Univariate repeated measures techniques applied to multivariate data, *Psychometrika*, **48**, no. 3, (1983), 451–464.
- [11] Edwin Zarrazola, Raúl Alejandro Morán-Vásquez, Daya K. Nagar, Percentage points for testing two-sample compound symmetry, *Int. J. Math. Comput. Sci.*, **18**, no. 3, (2023), 571–580.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Percentage points of V for $p=2$					Percentage points of V for $p=3$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$n \setminus \alpha$	0.01	0.025	0.05	0.1	-	$n \setminus \alpha$	0.01	0.025	0.05	0.1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	0.0027	0.0067	0.0136	0.0278			0.0009	0.0023	0.0046	0.0095	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0.0350	0.0565	0.0820	0.1205		7	0.0135	0.0221	0.0325	0.0488	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	0.0907	0.1265	0.1641	0.2152		8	0.0394	0.0559	0.0738	0.0993	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	0.1520	0.1966	0.2406	0.2973		9	0.0726	0.0958	0.1196	0.1515	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	0.2111	0.2607	0.3077	0.3661		10	0.1090	0.1373	0.1653	0.2016	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	0.2654	0.3174	0.3655	0.4238		11	0.1460	0.1782	0.2091	0.2482	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	0.3144	0.3673	0.4153	0.4724		12	0.1823	0.2172	0.2501	0.2909	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	0.3582	0.4111	0.4583	0.5138		13	0.2172	0.2540	0.2881	0.3299	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	0.3973	0.4497	0.4958	0.5494		14	0.2502	0.2883	0.3231	0.3653	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	0.4324			0.5802		15					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.5832	0.6310							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							- 30	0.5090	0.0030	0.0314	0.0054	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						•		_				
8 0.0003 0.0008 0.0017 0.0035 10 0.0001 0.0003 0.0006 0.0013 9 0.0054 0.0089 0.0132 0.0201 11 0.0022 0.0036 0.0054 0.0084 10 0.0171 0.0247 0.0331 0.0453 12 0.0074 0.0108 0.0147 0.0204 11 0.0342 0.0458 0.0580 0.0749 13 0.0159 0.0215 0.0276 0.0363 12 0.0548 0.0702 0.0857 0.1066 14 0.0269 0.0350 0.0433 0.0547 13 0.0776 0.0963 0.1147 0.1387 15 0.0401 0.0505 0.0609 0.0748 14 0.1017 0.1231 0.1438 0.1703 16 0.0549 0.0674 0.0798 0.0959 15 0.1262 0.1499 0.1725 0.2010 17 0.0709 0.0853 0.0994 0.1175 16 <												
9 0.0054 0.0089 0.0132 0.0201 11 0.0022 0.0036 0.0054 0.0084 10 0.0171 0.0247 0.0331 0.0453 12 0.0074 0.0108 0.0147 0.0204 11 0.0342 0.0458 0.0580 0.0749 13 0.0159 0.0215 0.0276 0.0363 12 0.0548 0.0702 0.0857 0.1066 14 0.0269 0.0350 0.0433 0.0547 13 0.0776 0.0963 0.1147 0.1387 15 0.0401 0.0505 0.0609 0.0748 14 0.1017 0.1231 0.1438 0.1703 16 0.0549 0.0674 0.0798 0.0959 15 0.1262 0.1499 0.1725 0.2010 17 0.0709 0.0853 0.0994 0.1175 16 0.1507 0.1763 0.2044 0.2303 18 0.0876 0.1038 0.1194 0.1392 17												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
12 0.0548 0.0702 0.0857 0.1066 14 0.0269 0.0350 0.0433 0.0547 13 0.0776 0.0963 0.1147 0.1387 15 0.0401 0.0505 0.0609 0.0748 14 0.1017 0.1231 0.1438 0.1703 16 0.0549 0.0674 0.0798 0.0959 15 0.1262 0.1499 0.1725 0.2010 17 0.0709 0.0853 0.0994 0.1175 16 0.1507 0.1763 0.2004 0.2303 18 0.0876 0.1038 0.1194 0.1392 17 0.1749 0.2020 0.2272 0.2583 19 0.1048 0.1226 0.1395 0.1608 18 0.1985 0.2268 0.2529 0.2848 20 0.1222 0.1414 0.1594 0.1819 19 0.2214 0.2506 0.2774 0.3098 21 0.1397 0.1601 0.1791 0.2026 20												
13 0.0776 0.0963 0.1147 0.1387 15 0.0401 0.0505 0.0609 0.0748 14 0.1017 0.1231 0.1438 0.1703 16 0.0549 0.0674 0.0798 0.0959 15 0.1262 0.1499 0.1725 0.2010 17 0.0709 0.0853 0.0994 0.1175 16 0.1507 0.1763 0.2004 0.2303 18 0.0876 0.1038 0.1194 0.1392 17 0.1749 0.2020 0.2272 0.2583 19 0.1048 0.1226 0.1395 0.1608 18 0.1985 0.2268 0.2529 0.2848 20 0.1222 0.1414 0.1594 0.1819 19 0.2214 0.2506 0.2774 0.3098 21 0.1397 0.1601 0.1791 0.2026 20 0.2434 0.2734 0.3006 0.3334 22 0.1570 0.1785 0.1983 0.2227 21												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
18 0.1985 0.2268 0.2529 0.2848 20 0.1222 0.1414 0.1594 0.1819 19 0.2214 0.2506 0.2774 0.3098 21 0.1397 0.1601 0.1791 0.2026 20 0.2434 0.2734 0.3006 0.3334 22 0.1570 0.1785 0.1983 0.2227 21 0.2647 0.2952 0.3227 0.3557 23 0.1742 0.1965 0.2171 0.2421 22 0.2850 0.3160 0.3437 0.3767 24 0.1911 0.2142 0.2353 0.2609 23 0.3045 0.3357 0.3635 0.3965 25 0.2077 0.2314 0.2530 0.2791 24 0.3232 0.3545 0.3824 0.4153 26 0.2238 0.2481 0.2701 0.2965 25 0.3411 0.3725 0.4002 0.4330 27 0.2396 0.2643 0.2866 0.3133												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
20 0.2434 0.2734 0.3006 0.3334 22 0.1570 0.1785 0.1983 0.2227 21 0.2647 0.2952 0.3227 0.3557 23 0.1742 0.1965 0.2171 0.2421 22 0.2850 0.3160 0.3437 0.3767 24 0.1911 0.2142 0.2353 0.2609 23 0.3045 0.3357 0.3635 0.3965 25 0.2077 0.2314 0.2530 0.2791 24 0.3232 0.3545 0.3824 0.4153 26 0.2238 0.2481 0.2701 0.2965 25 0.3411 0.3725 0.4002 0.4330 27 0.2396 0.2643 0.2866 0.3133												
21 0.2647 0.2952 0.3227 0.3557 23 0.1742 0.1965 0.2171 0.2421 22 0.2850 0.3160 0.3437 0.3767 24 0.1911 0.2142 0.2353 0.2609 23 0.3045 0.3357 0.3635 0.3965 25 0.2077 0.2314 0.2530 0.2791 24 0.3232 0.3545 0.3824 0.4153 26 0.2238 0.2481 0.2701 0.2965 25 0.3411 0.3725 0.4002 0.4330 27 0.2396 0.2643 0.2866 0.3133												
22 0.2850 0.3160 0.3437 0.3767 24 0.1911 0.2142 0.2353 0.2609 23 0.3045 0.3357 0.3635 0.3965 25 0.2077 0.2314 0.2530 0.2791 24 0.3232 0.3545 0.3824 0.4153 26 0.2238 0.2481 0.2701 0.2965 25 0.3411 0.3725 0.4002 0.4330 27 0.2396 0.2643 0.2866 0.3133					0.3334			0.1570				
23 0.3045 0.3357 0.3635 0.3965 25 0.2077 0.2314 0.2530 0.2791 24 0.3232 0.3545 0.3824 0.4153 26 0.2238 0.2481 0.2701 0.2965 25 0.3411 0.3725 0.4002 0.4330 27 0.2396 0.2643 0.2866 0.3133												
24 0.3232 0.3545 0.3824 0.4153 26 0.2238 0.2481 0.2701 0.2965 25 0.3411 0.3725 0.4002 0.4330 27 0.2396 0.2643 0.2866 0.3133	22	0.2850	0.3160	0.3437	0.3767		24	0.1911	0.2142	0.2353	0.2609	
24 0.3232 0.3545 0.3824 0.4153 26 0.2238 0.2481 0.2701 0.2965 25 0.3411 0.3725 0.4002 0.4330 27 0.2396 0.2643 0.2866 0.3133	23	0.3045	0.3357	0.3635	0.3965		25	0.2077	0.2314	0.2530	0.2791	
	24	0.3232		0.3824	0.4153		26	0.2238	0.2481	0.2701	0.2965	
	25	0.3411					27					
20 0.5561 0.5695 0.4172 0.4497 28 0.2549 0.2801 0.3026 0.3295	26	0.3581	0.3895	0.4172	0.4497		28	0.2549	0.2801	0.3026	0.3295	
$27 0.3744 0.4058 0.4333 0.4655 \qquad \qquad 29 0.2699 0.2953 0.3180 0.3450$	27	0.3744		0.4333			29		0.2953			
28 0.3900 0.4213 0.4486 0.4805 30 0.2843 0.3100 0.3328 0.3600							30					
29 0.4050 0.4360 0.4632 0.4947				0.4632								
30 0.4192 0.4501 0.4770 0.5082	30	0.4192		0.4770	0.5082							

Table 1: percentage points of V for p=2,3,4 and 5.