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Abstract

In this article, we prove that (1, 0, 8) and (0, 1, 18) are the only
solutions for the Diophantine equation 63x + 323y = z

2 where x, y
and z are non-negative integers.

1 Introduction

The Catalan’s conjecture [1], proved by Mihailescu [2], plays an important
role in finding the non-negative solutions to the Diophantine equations of the
form ax+ by = z2, where a and b are fixed. In 2014, Sroysang [3] proved that
the Diophantine equation 323x+325y = z2 has a unique non-negative integer
solution and that it is (x, y, z) = (1, 0, 18). In the same year, Sroysang [4]
showed that (0, 1, 8) is the only one non-negative integer solution (x, y, z) of
the Diophantine equation 5x + 63y = z2.

In this paper, we solve the Diophantine equation 63x + 323y = z2, where
x, y and z are non-negative integers.
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2 Preliminaries

Throughout this paper, a ≡m b always means that a is congruent to b modulo
m where a, b, and m are integers such that m > 1. Moreover, we denote
a ≡m b or a ≡m c by a ≡m b, c.

Next, we recall two lemmas [3] and [4] which will be useful in the prove
of our main theorem.

Lemma 2.1. [3] The Diophantine equation 1 + 323y = z2 has the unique

non-negative integer solution (y, z) = (1, 18).

Lemma 2.2. [4] The Diophantine equation 63x + 1 = z2 has the unique

non-negative integer solution (x, z) = (1, 8).

3 Main Results

Before considering the main result, we shall give two lemmas.

Lemma 3.1. If z is an integer, then z2 ≡17 0, 1, 2, 4, 8, 9, 13, 15, 16.

Proof. Assume that z is an integer. Then

z ≡17 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16.

Thus,

z2 ≡17 0, 1, 4, 9, 16, 8, 2, 15, 13, 13, 15, 2, 8, 16, 9, 4, 1.

The proof of this lemma is complete.

Lemma 3.2. If n is a positive odd integer, then 122n−1
≡17 3, 5, 6, 7, 10, 11, 12, 14.

Proof. We will prove by induction that 122n−1
≡17 3, 5, 6, 7, 10, 11, 12, 14, for

all n ∈ N. If n = 1, we have 121 ≡17 12. Thus, the statement is true for n = 1.
Assume that it is true for n = k. Then, 122k−1

≡17 3, 5, 6, 7, 10, 11, 12, 14,
and so 122k+1

≡17 7, 6, 14, 5, 12, 3, 11, 10. Hence, the statement is true for
n = k + 1, which proves the result.

Next, we give our main result.

Theorem 3.3. The Diophantine equation 63x + 323y = z2 has exactly two

non-negative integer solutions (x, y, z), which are (1, 0, 8) and (0, 1, 18).
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Proof. Assume that there exist non-negative integers x, y, z such that 63x+
323y = z2. By Lemma 2.1 and 2.2 , we obtain that (0, 1, 18) and (1, 0, 8)
are two solutions (x, y, z) of the equation. Now, we consider x > 1 and
y > 1. If y is odd, then z2 = 63x + 323y ≡3 2, which contradicts the fact
that z2 ≡3 0, 1. Now, y is even. If x is even, then z2 = 63x + 323y ≡4 2,
which contradicts the fact that z2 ≡4 0, 1. Then, x is odd. Since 63 ≡17 12,
we have 63x ≡17 3, 5, 6, 7, 10, 11, 12, 14, by Lemma 3.2. Since 323y ≡17 0,
z2 ≡17 3, 5, 6, 7, 10, 11, 12, 14, which contradicts Lemma 3.1. This completes
the proof.

Corollary 3.4. (1, 0, 4) and (0, 1, 9) are the only non-negative integer solu-

tions (x, y, w) of the Diophantine equation 63x + 323y = 4w2.

4 Conclusion

In this paper, we showed that the Diophantine equation 63x +323y = z2 has
only the two solutions (1, 0, 8) and (1, 0, 18), when x, y, z are non-negative
integers.
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