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Abstract

This paper investigates the exponential Diophantine equation 8% +
nY = 22, where n > 1 is an odd positive integer. We characterize
solutions for the base cases (x = 0 or y = 0) and describe, based on
implications of Bennett and Skinner’s theorem, that no solutions exist
for y > 2 in certain cases. For y = 1 and y = 2, we employ elliptic
curve methods, focusing on the equations z? = t3+n and 22 = t34+n?,
where t = 2*. This work generalizes known results for specific cases
and provides insights into this class of Diophantine equations and their
associated elliptic curves.

1 Introduction

Exponential Diophantine equations of the form a® + oY = 22, where a, b
are fixed positive integers and x, y, z are non-negative integer variables,
have been a subject of intense study in number theory. Recent research has
focused on specific cases, particularly 8% + p¥ = 22 where p is prime.
Sroysang [2, 4] and Rabago [3] investigated cases where p = 19, 13, and 17,
respectively. In a more general context, Qi and Li [5] examined 8% + p¥ = 22
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for any odd prime p, classifying solutions based on the congruence class of
p modulo 8. Manikandan and Venkatraman [6] and Panraksa [8] studied
the equation 8% + 161Y = 22, providing a complete characterization of its
solutions.

We investigate the equation 8% 4+ n¥ = 22 for positive integers n, with a
computational focus on n = pg where p and ¢ are distinct odd primes. Our
examples and detailed computations are for prime pairs (p, ¢) with p, ¢ < 200,
combining theoretical analysis with practical computational results.

2 Preliminaries

Our analysis relies heavily on a theorem by Bennett and Skinner [1], which
provides powerful results for a class of ternary Diophantine equations. We
present a simplified version of their theorem that is directly applicable to our
problem:

Theorem 2.1. (Bennett and Skinner, 2004) Let D be an odd positive inte-
ger. Then:

(a). The equation x*> + D™ = 2™ has no solutions in integers (x,m,n) with
m > 1, unless (|x|,m,n, D) = (13,3,9,7).

(b). The equation x*> — D™ = 2" with D > 1, m > 2 and n > 1, has only the
integer solution (|x|,m,n, D) = (71,3,7,17).

This Theorem 2.1 (b) will be crucial in our analysis of the equation 8" +
nY = 2%, particularly for the case where y > 2. It provides strong restrictions
on the possible solutions, which we will exploit in our proofs.

For the cases where y = 1 and y = 2, we will employ results from the
theory and computation of elliptic curves.

3 Base Cases

We begin by examining the base cases (x = 0 or y = 0) of the equation
8% 4 nY = 2%, where n is a positive integer.

Proposition 3.1. For the exponential Diophantine equation 8% 4+ nY = 22,
where n > 1 is a positive integer, if xy = 0, then:

1. No solutions exist when x =y = 0.

2. Forx =0 andy > 0:

Subcase 1. When y = 1, solutions exist if and only if n has one of the
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following two forms:
(a) n = (2k)? — 1 for some positive integer k, in which case the unique
solution is (x,y, z) = (0, 1, 2k).
(b) n = (2k + 1)? — 1 for some non-negative integer k, in which case the
unique solution is (x,y,z) = (0,1,2k + 1).
Subcase 2. No solutions exist for y > 1.

3. (z,y,2) = (1,0,3) is the only solution when z > 0 and y = 0.

Proof. 1. When z = y = 0: The equation becomes 1 + 1 = 22, which has no
integer solutions.

2. When z = 0 and y > 0: We have n¥ = 22 — 1.
For y > 1, the right-hand side cannot be a perfect power greater than 1
and so there are no solutions.
For y = 1, we consider two cases:
Case 1: n is odd. In this case, z must be even. Let z = 2k, where k > 1.
Then
n=(2k)?—-1=4kK -1

This yields the solution (z,y, z) = (0,1, 2k), where n = (2k — 1)(2k + 1).
Case 2: n is even. In this case, z must be odd. Let z = 2k + 1, where
k > 0. Then

n=(2k+1)-1D(2k+1)+1) = (2k)(2k +2) =4k* + 4k = 2k +1)* -1
This yields the solution (z,y, z) = (0,1,2k + 1), where n = (2k + 1)? — 1.

3. When z > 0 and y = 0, we have the equation 8 + 1 = 22, For z = 1,
we obtain the solution (1,0,3). For x > 1, we can rewrite the equation as
8" = (2 —1)(z + 1). Note that z must be odd and at least 7 (since z > 1).
Let z = 2k + 1 where k£ > 3. Substituting this into our equation gives
8" = 4k(k + 1). This implies that k(k + 1) is divisible only by a power of 2.
However, since k and k 4 1 are consecutive integers with £ > 3, one of them
must be odd and greater than 3. This leads to a contradiction for x > 1, as
k(k + 1) would have an odd factor greater than 3. O
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4 Elliptic Curve Analysis and Computational
Method

For this section, we assume that n > 1 is an odd positive integer and y a
positive integer.

Bennett and Skinner’s work [1] allows us to focus our study of 8 +n¥ = 22
ony =1 and y = 2. We transform the equation into elliptic curves. For
y = 1, the equation becomes 22 = t3> + n, and for y = 2, it becomes
22 = 3 + n?, where t = 2% in both cases. Both equations are in Weier-
strass form y? = 23 +axr + b, with o = ¢, y = 2, a = 0, and b = n or n?,
respectively.

Using SageMath [7], we implement a two-step process to find solutions.
First, we find integral points on these elliptic curves. Then, we identify the
points where t is a power of 2. This approach allows for a systematic search
for solutions for any given n, providing a comprehensive method to analyze
the original Diophantine equation.

To find solutions to the equation 8 + n¥ = 22 for y = 1 and y = 2,
we implemented a computational method using SageMath. The core of this
method is the find_solutions function:



Exploring 8% +nY = 22... 251

def is_power_of_two(n):
if not n.is_integer():
return False
n = Integer(n)
returnn > 0 and (n & (n - 1)) ==

def find_solutions(n):
solutions = []
for y in [1, 2]:
E = EllipticCurve([0, 0, O, O, n7yl)
for point in E.integral_points():
t, z, _ = point
if is_power_of_two(t):
x = Integer(t).nbits() -1
solutions.append((x, y, abs(z)))
return solutions

Figure 1: SageMath Code for Finding Solutions to 8% + n¥ = 22.

This function constructs elliptic curves 22 = 3 +n? fory = 1 and y = 2,
finds their integral points, and identifies solutions where t is a power of 2.

Example 4.1. To demonstrate both the general method and the direct elliptic
curve calculations, let us consider n = 161 = (7)(23), corresponding to the
equation 8" + 161Y = z* studied by Manikandan and Venkatraman [6] and
Panraksa [8].

First, we compute the integral points on the elliptic curves directly:



252 C. Panraksa

El = EllipticCurve([O, O, 0, 0, 161])
print(El.integral_points())

E2 = EllipticCurve([O, O, 0, 0, 16172])
print (E2.integral_points())

n = Integer(161)
print(find_solutions(n))

Output:

[(-5: -6 :1), (2 : -13 : 1), (4 : -15 : 1),
(190 : -2619 : 1)]
[(-28 : -63 : 1), (0 : -161 : 1), (92 : -897 : 1)]

These are all the integral points on the curves 2> = t3 4 161 and 2% =
3 + 1612, respectively.

Now, let us use our function to identify which of these points correspond
to solutions of our original equation: Qutput:

({1, 1, 13), (2, 1, 15)]

These solutions can be verified:

(1,1,13): 81 4 161! = 8 + 161 = 169 = 132,
(2,1,15): 82 4+ 161! = 64 + 161 = 225 = 15%

Comparing the outputs, we can see that our function correctly identified
the points (2 : 18 : 1) and (4 : 15 : 1) from the first curve as solutions,
corresponding to t = 2 = 2! and t = 4 = 22, respectively. It ignored the
points with negative t values and the point (190 : 2619 : 1) where t is not a
power of 2. For the second curve (y = 2), no solutions were found as none
of the t values are powers of 2.

We extended this analysis to various prime pairs (p, ¢) where n = pq. Ta-
ble 1 presents the additional solutions (beyond the trivial solution (x,y, z) =
(1,0,3)) for prime pairs (p, q) with p < ¢ < 200.
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Table 1: Additional Solutions to 8* +

with p < ¢ < 200
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(pq)? = 2? for Odd Prime Pairs (p, q)

(p,q) (z,y,2) (p,q) (z,y,2)
(3,5) | (0, 1,4), (22, 17) (31,191) | (1,1, 77)
(3,19) | (2,1, 11) (37,53) | (2,1, 45)
(3,43) | (4,1, 65) (41, 43) | (0, 1, 42)
(3,131) | (4,1, 67) (41,97) | (3,1, 67)
(5,7) | (0,1,6) (41,137) | (1,1, 75)
(7,23) | (1,1,13), (2,1, 15) || (41,193) | (1, 1, 89)
(7,31) | (1,1, 15), (3,1, 27) (43,59) | (2,1, 51)
(7,47) | (3,1, 29) (47,79) | (1,1, 61), (3, 1, 65), (5, 1, 191)
(7,103) | (1,1, 27), (5, 1,183) || (53,181) | (4, 1, 117)
(7,167) | (3,1, 41) (59, 61) | (0, 1, 60)
(7,191) | (3,1, 43) (67,83) | (2,1, 75)
(11,13) | (0,1, 12) (71,73) | (0,1, 72)
(11, 139) | (4, 1, 75) (71,127) | (1,1, 95)
(13,29) | (2,1, 21) (71,199) | (3,1, 121), (4, 1, 135)
(17,19) | (0, 1, 18) (73,89) | (2,1, 81)
(17,89) | (1,1,39), (3,1,45) | (73,113) | (7, 1, 1451)
(23,31) | (3,1, 35) (79,103) | (3,1, 93)
(23,47) | (1,1, 33) (89, 193) | (3,1, 133)
(23,151) | (1,1,59), (4,1, 87) || (97, 113) | (2, 1, 105)
(29, 31) | (0, 1, 30) (101, 103) | (0, 1, 102)
(29, 157) | (4, 1, 93) (103, 191) | (5, 1, 229)
(31,47) | (2,1, 39), (5,1, 185) || (107, 109) | (0, 1, 108)
(31,71) | (1, 1,47), (5,1, 187) || (127, 199) | (1, 1, 159)
(31,79) | (7,1, 1449) (137, 139) | (0, 1, 138)
(149, 151) | (0, 1, 150) (179, 181) | (0, 1, 180)
(151, 167) | (2, 1, 159) (181, 197) | (2, 1, 189)
(157, 173) | (2, 1, 165) (191, 193) | (0, 1, 192)
(163, 179) | (2, 1, 171) (197, 199) | (0, 1, 198)
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This computational method, combining direct elliptic curve calculations

with our specialized function, allows for efficient exploration of solutions
across various values of n, providing a powerful tool for studying the prop-

erties and patterns of the equation 8* + n¥ = 2°.
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