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Abstract

This paper investigates the exponential Diophantine equation 8x+
ny = z2, where n > 1 is an odd positive integer. We characterize
solutions for the base cases (x = 0 or y = 0) and describe, based on
implications of Bennett and Skinner’s theorem, that no solutions exist
for y > 2 in certain cases. For y = 1 and y = 2, we employ elliptic
curve methods, focusing on the equations z2 = t3+n and z2 = t3+n2,
where t = 2x. This work generalizes known results for specific cases
and provides insights into this class of Diophantine equations and their
associated elliptic curves.

1 Introduction

Exponential Diophantine equations of the form ax + by = z2, where a, b

are fixed positive integers and x, y, z are non-negative integer variables,
have been a subject of intense study in number theory. Recent research has
focused on specific cases, particularly 8x + py = z2 where p is prime.

Sroysang [2, 4] and Rabago [3] investigated cases where p = 19, 13, and 17,
respectively. In a more general context, Qi and Li [5] examined 8x + py = z2
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for any odd prime p, classifying solutions based on the congruence class of
p modulo 8. Manikandan and Venkatraman [6] and Panraksa [8] studied
the equation 8x + 161y = z2, providing a complete characterization of its
solutions.

We investigate the equation 8x + ny = z2 for positive integers n, with a
computational focus on n = pq where p and q are distinct odd primes. Our
examples and detailed computations are for prime pairs (p, q) with p, q < 200,
combining theoretical analysis with practical computational results.

2 Preliminaries

Our analysis relies heavily on a theorem by Bennett and Skinner [1], which
provides powerful results for a class of ternary Diophantine equations. We
present a simplified version of their theorem that is directly applicable to our
problem:

Theorem 2.1. (Bennett and Skinner, 2004) Let D be an odd positive inte-
ger. Then:
(a). The equation x2 + Dm = 2n has no solutions in integers (x,m, n) with
m > 1, unless (|x|, m, n,D) = (13, 3, 9, 7).
(b). The equation x2 −Dm = 2n, with D > 1, m > 2 and n > 1, has only the
integer solution (|x|, m, n,D) = (71, 3, 7, 17).

This Theorem 2.1 (b) will be crucial in our analysis of the equation 8x +
ny = z2, particularly for the case where y > 2. It provides strong restrictions
on the possible solutions, which we will exploit in our proofs.

For the cases where y = 1 and y = 2, we will employ results from the
theory and computation of elliptic curves.

3 Base Cases

We begin by examining the base cases (x = 0 or y = 0) of the equation
8x + ny = z2, where n is a positive integer.

Proposition 3.1. For the exponential Diophantine equation 8x + ny = z2,
where n > 1 is a positive integer, if xy = 0, then:
1. No solutions exist when x = y = 0.
2. For x = 0 and y > 0:
Subcase 1. When y = 1, solutions exist if and only if n has one of the
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following two forms:
(a) n = (2k)2 − 1 for some positive integer k, in which case the unique
solution is (x, y, z) = (0, 1, 2k).
(b) n = (2k + 1)2 − 1 for some non-negative integer k, in which case the
unique solution is (x, y, z) = (0, 1, 2k + 1).
Subcase 2. No solutions exist for y > 1.

3. (x, y, z) = (1, 0, 3) is the only solution when x > 0 and y = 0.

Proof. 1. When x = y = 0: The equation becomes 1 + 1 = z2, which has no
integer solutions.

2. When x = 0 and y > 0: We have ny = z2 − 1.
For y > 1, the right-hand side cannot be a perfect power greater than 1

and so there are no solutions.
For y = 1, we consider two cases:
Case 1: n is odd. In this case, z must be even. Let z = 2k, where k ≥ 1.

Then
n = (2k)2 − 1 = 4k2 − 1

This yields the solution (x, y, z) = (0, 1, 2k), where n = (2k − 1)(2k + 1).
Case 2: n is even. In this case, z must be odd. Let z = 2k + 1, where

k ≥ 0. Then

n = ((2k + 1)− 1)((2k + 1) + 1) = (2k)(2k + 2) = 4k2 + 4k = (2k + 1)2 − 1

This yields the solution (x, y, z) = (0, 1, 2k + 1), where n = (2k + 1)2 − 1.

3. When x > 0 and y = 0, we have the equation 8x + 1 = z2. For x = 1,
we obtain the solution (1, 0, 3). For x > 1, we can rewrite the equation as
8x = (z − 1)(z + 1). Note that z must be odd and at least 7 (since x > 1).
Let z = 2k + 1 where k ≥ 3. Substituting this into our equation gives
8x = 4k(k + 1). This implies that k(k + 1) is divisible only by a power of 2.
However, since k and k + 1 are consecutive integers with k ≥ 3, one of them
must be odd and greater than 3. This leads to a contradiction for x > 1, as
k(k + 1) would have an odd factor greater than 3.
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4 Elliptic Curve Analysis and Computational

Method

For this section, we assume that n > 1 is an odd positive integer and y a
positive integer.

Bennett and Skinner’s work [1] allows us to focus our study of 8x+ny = z2

on y = 1 and y = 2. We transform the equation into elliptic curves. For
y = 1, the equation becomes z2 = t3 + n, and for y = 2, it becomes
z2 = t3 + n2, where t = 2x in both cases. Both equations are in Weier-
strass form y2 = x3 + ax + b, with x = t, y = z, a = 0, and b = n or n2,
respectively.

Using SageMath [7], we implement a two-step process to find solutions.
First, we find integral points on these elliptic curves. Then, we identify the
points where t is a power of 2. This approach allows for a systematic search
for solutions for any given n, providing a comprehensive method to analyze
the original Diophantine equation.

To find solutions to the equation 8x + ny = z2 for y = 1 and y = 2,
we implemented a computational method using SageMath. The core of this
method is the find solutions function:
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def is_power_of_two(n):

if not n.is_integer():

return False

n = Integer(n)

return n > 0 and (n & (n - 1)) == 0

def find_solutions(n):

solutions = []

for y in [1, 2]:

E = EllipticCurve([0, 0, 0, 0, n^y])

for point in E.integral_points():

t, z, _ = point

if is_power_of_two(t):

x = Integer(t).nbits() - 1

solutions.append((x, y, abs(z)))

return solutions

Figure 1: SageMath Code for Finding Solutions to 8x + ny = z2.

This function constructs elliptic curves z2 = t3 + ny for y = 1 and y = 2,
finds their integral points, and identifies solutions where t is a power of 2.

Example 4.1. To demonstrate both the general method and the direct elliptic
curve calculations, let us consider n = 161 = (7)(23), corresponding to the
equation 8x + 161y = z2 studied by Manikandan and Venkatraman [6] and
Panraksa [8].

First, we compute the integral points on the elliptic curves directly:
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E1 = EllipticCurve([0, 0, 0, 0, 161])

print(E1.integral_points())

E2 = EllipticCurve([0, 0, 0, 0, 161^2])

print(E2.integral_points())

n = Integer(161)

print(find_solutions(n))

Output:

[(-5 : -6 : 1), (2 : -13 : 1), (4 : -15 : 1),

(190 : -2619 : 1)]

[(-28 : -63 : 1), (0 : -161 : 1), (92 : -897 : 1)]

These are all the integral points on the curves z2 = t3 + 161 and z2 =
t3 + 1612, respectively.

Now, let us use our function to identify which of these points correspond
to solutions of our original equation: Output:

[(1, 1, 13), (2, 1, 15)]

These solutions can be verified:

(1, 1, 13): 81 + 1611 = 8 + 161 = 169 = 132.
(2, 1, 15): 82 + 1611 = 64 + 161 = 225 = 152.

Comparing the outputs, we can see that our function correctly identified
the points (2 : 13 : 1) and (4 : 15 : 1) from the first curve as solutions,
corresponding to t = 2 = 21 and t = 4 = 22, respectively. It ignored the
points with negative t values and the point (190 : 2619 : 1) where t is not a
power of 2. For the second curve (y = 2), no solutions were found as none
of the t values are powers of 2.

We extended this analysis to various prime pairs (p, q) where n = pq. Ta-
ble 1 presents the additional solutions (beyond the trivial solution (x, y, z) =
(1, 0, 3)) for prime pairs (p, q) with p < q < 200.
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Table 1: Additional Solutions to 8x + (pq)y = z2 for Odd Prime Pairs (p, q)
with p < q < 200

(p, q) (x, y, z) (p, q) (x, y, z)
(3, 5) (0, 1, 4), (2, 2, 17) (31, 191) (1, 1, 77)
(3, 19) (2, 1, 11) (37, 53) (2, 1, 45)
(3, 43) (4, 1, 65) (41, 43) (0, 1, 42)
(3, 131) (4, 1, 67) (41, 97) (3, 1, 67)
(5, 7) (0, 1, 6) (41, 137) (1, 1, 75)
(7, 23) (1, 1, 13), (2, 1, 15) (41, 193) (1, 1, 89)
(7, 31) (1, 1, 15), (3, 1, 27) (43, 59) (2, 1, 51)
(7, 47) (3, 1, 29) (47, 79) (1, 1, 61), (3, 1, 65), (5, 1, 191)
(7, 103) (1, 1, 27), (5, 1, 183) (53, 181) (4, 1, 117)
(7, 167) (3, 1, 41) (59, 61) (0, 1, 60)
(7, 191) (3, 1, 43) (67, 83) (2, 1, 75)
(11, 13) (0, 1, 12) (71, 73) (0, 1, 72)
(11, 139) (4, 1, 75) (71, 127) (1, 1, 95)
(13, 29) (2, 1, 21) (71, 199) (3, 1, 121), (4, 1, 135)
(17, 19) (0, 1, 18) (73, 89) (2, 1, 81)
(17, 89) (1, 1, 39), (3, 1, 45) (73, 113) (7, 1, 1451)
(23, 31) (3, 1, 35) (79, 103) (3, 1, 93)
(23, 47) (1, 1, 33) (89, 193) (3, 1, 133)
(23, 151) (1, 1, 59), (4, 1, 87) (97, 113) (2, 1, 105)
(29, 31) (0, 1, 30) (101, 103) (0, 1, 102)
(29, 157) (4, 1, 93) (103, 191) (5, 1, 229)
(31, 47) (2, 1, 39), (5, 1, 185) (107, 109) (0, 1, 108)
(31, 71) (1, 1, 47), (5, 1, 187) (127, 199) (1, 1, 159)
(31, 79) (7, 1, 1449) (137, 139) (0, 1, 138)

(149, 151) (0, 1, 150) (179, 181) (0, 1, 180)
(151, 167) (2, 1, 159) (181, 197) (2, 1, 189)
(157, 173) (2, 1, 165) (191, 193) (0, 1, 192)
(163, 179) (2, 1, 171) (197, 199) (0, 1, 198)
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This computational method, combining direct elliptic curve calculations
with our specialized function, allows for efficient exploration of solutions
across various values of n, providing a powerful tool for studying the prop-
erties and patterns of the equation 8x + ny = z2.
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