International Journal of Mathematics and Computer Science Volume **20**, Issue no. 1, (2025), 247–254 DOI: https://doi.org/10.69793/ijmcs/01.2025/chatchawan

Exploring $8^x + n^y = z^2$ through Associated Elliptic Curves

Chatchawan Panraksa

Applied Mathematics Program Mahidol University International College 999 Phutthamonthon 4 Road, Salaya, 73170 Nakhonpathom, Thailand

email: chatchawan.pan@mahidol.edu

(Received August 18, 2024, Accepted September 19, 2024, Published September 25, 2024)

Abstract

This paper investigates the exponential Diophantine equation $8^x + n^y = z^2$, where n > 1 is an odd positive integer. We characterize solutions for the base cases (x = 0 or y = 0) and describe, based on implications of Bennett and Skinner's theorem, that no solutions exist for y > 2 in certain cases. For y = 1 and y = 2, we employ elliptic curve methods, focusing on the equations $z^2 = t^3 + n$ and $z^2 = t^3 + n^2$, where $t = 2^x$. This work generalizes known results for specific cases and provides insights into this class of Diophantine equations and their associated elliptic curves.

1 Introduction

Exponential Diophantine equations of the form $a^x + b^y = z^2$, where a, b are fixed positive integers and x, y, z are non-negative integer variables, have been a subject of intense study in number theory. Recent research has focused on specific cases, particularly $8^x + p^y = z^2$ where p is prime.

Sroysang [2, 4] and Rabago [3] investigated cases where p = 19, 13, and 17, respectively. In a more general context, Qi and Li [5] examined $8^x + p^y = z^2$

Key words and phrases: Exponential Diophantine equation, elliptic curve, computer algebra, non-negative integer solution, number theory.

AMS (MOS) Subject Classifications: 11D61, 11G05, 11Y50, 14H52. **ISSN** 1814-0432, 2025, https://future-in-tech.net for any odd prime p, classifying solutions based on the congruence class of p modulo 8. Manikandan and Venkatraman [6] and Panraksa [8] studied the equation $8^x + 161^y = z^2$, providing a complete characterization of its solutions.

We investigate the equation $8^x + n^y = z^2$ for positive integers n, with a computational focus on n = pq where p and q are distinct odd primes. Our examples and detailed computations are for prime pairs (p, q) with p, q < 200, combining theoretical analysis with practical computational results.

2 Preliminaries

Our analysis relies heavily on a theorem by Bennett and Skinner [1], which provides powerful results for a class of ternary Diophantine equations. We present a simplified version of their theorem that is directly applicable to our problem:

Theorem 2.1. (Bennett and Skinner, 2004) Let D be an odd positive integer. Then:

(a). The equation $x^2 + D^m = 2^n$ has no solutions in integers (x, m, n) with m > 1, unless (|x|, m, n, D) = (13, 3, 9, 7).

(b). The equation $x^2 - D^m = 2^n$, with D > 1, m > 2 and n > 1, has only the integer solution (|x|, m, n, D) = (71, 3, 7, 17).

This Theorem 2.1 (b) will be crucial in our analysis of the equation $8^x + n^y = z^2$, particularly for the case where y > 2. It provides strong restrictions on the possible solutions, which we will exploit in our proofs.

For the cases where y = 1 and y = 2, we will employ results from the theory and computation of elliptic curves.

3 Base Cases

We begin by examining the base cases (x = 0 or y = 0) of the equation $8^x + n^y = z^2$, where n is a positive integer.

Proposition 3.1. For the exponential Diophantine equation $8^x + n^y = z^2$, where n > 1 is a positive integer, if xy = 0, then:

1. No solutions exist when x = y = 0.

2. For x = 0 and y > 0:

Subcase 1. When y = 1, solutions exist if and only if n has one of the

Exploring $8^x + n^y = z^2 \dots$

following two forms:

(a) $n = (2k)^2 - 1$ for some positive integer k, in which case the unique solution is (x, y, z) = (0, 1, 2k).

(b) $n = (2k+1)^2 - 1$ for some non-negative integer k, in which case the unique solution is (x, y, z) = (0, 1, 2k + 1).

Subcase 2. No solutions exist for y > 1.

3. (x, y, z) = (1, 0, 3) is the only solution when x > 0 and y = 0.

Proof. 1. When x = y = 0: The equation becomes $1 + 1 = z^2$, which has no integer solutions.

2. When x = 0 and y > 0: We have $n^y = z^2 - 1$.

For y > 1, the right-hand side cannot be a perfect power greater than 1 and so there are no solutions.

For y = 1, we consider two cases:

Case 1: n is odd. In this case, z must be even. Let z = 2k, where $k \ge 1$. Then

$$n = (2k)^2 - 1 = 4k^2 - 1$$

This yields the solution (x, y, z) = (0, 1, 2k), where n = (2k - 1)(2k + 1).

Case 2: n is even. In this case, z must be odd. Let z = 2k + 1, where $k \ge 0$. Then

$$n = ((2k+1) - 1)((2k+1) + 1) = (2k)(2k+2) = 4k^2 + 4k = (2k+1)^2 - 1$$

This yields the solution (x, y, z) = (0, 1, 2k + 1), where $n = (2k + 1)^2 - 1$.

3. When x > 0 and y = 0, we have the equation $8^x + 1 = z^2$. For x = 1, we obtain the solution (1, 0, 3). For x > 1, we can rewrite the equation as $8^x = (z - 1)(z + 1)$. Note that z must be odd and at least 7 (since x > 1). Let z = 2k + 1 where $k \ge 3$. Substituting this into our equation gives $8^x = 4k(k + 1)$. This implies that k(k + 1) is divisible only by a power of 2. However, since k and k + 1 are consecutive integers with $k \ge 3$, one of them must be odd and greater than 3. This leads to a contradiction for x > 1, as k(k + 1) would have an odd factor greater than 3.

4 Elliptic Curve Analysis and Computational Method

For this section, we assume that n > 1 is an odd positive integer and y a positive integer.

Bennett and Skinner's work [1] allows us to focus our study of $8^x + n^y = z^2$ on y = 1 and y = 2. We transform the equation into elliptic curves. For y = 1, the equation becomes $z^2 = t^3 + n$, and for y = 2, it becomes $z^2 = t^3 + n^2$, where $t = 2^x$ in both cases. Both equations are in Weierstrass form $y^2 = x^3 + ax + b$, with x = t, y = z, a = 0, and b = n or n^2 , respectively.

Using SageMath [7], we implement a two-step process to find solutions. First, we find integral points on these elliptic curves. Then, we identify the points where t is a power of 2. This approach allows for a systematic search for solutions for any given n, providing a comprehensive method to analyze the original Diophantine equation.

To find solutions to the equation $8^x + n^y = z^2$ for y = 1 and y = 2, we implemented a computational method using SageMath. The core of this method is the find_solutions function:

Exploring $8^x + n^y = z^2 \dots$

Figure 1: SageMath Code for Finding Solutions to $8^x + n^y = z^2$.

This function constructs elliptic curves $z^2 = t^3 + n^y$ for y = 1 and y = 2, finds their integral points, and identifies solutions where t is a power of 2.

Example 4.1. To demonstrate both the general method and the direct elliptic curve calculations, let us consider n = 161 = (7)(23), corresponding to the equation $8^x + 161^y = z^2$ studied by Manikandan and Venkatraman [6] and Panraksa [8].

First, we compute the integral points on the elliptic curves directly:

```
E1 = EllipticCurve([0, 0, 0, 0, 161])
print(E1.integral_points())
E2 = EllipticCurve([0, 0, 0, 0, 161<sup>2</sup>])
print(E2.integral_points())
```

n = Integer(161)
print(find_solutions(n))

Output:

[(-5:-6:1), (2:-13:1), (4:-15:1), (190:-2619:1)][(-28:-63:1), (0:-161:1), (92:-897:1)]

These are all the integral points on the curves $z^2 = t^3 + 161$ and $z^2 = t^3 + 161^2$, respectively.

Now, let us use our function to identify which of these points correspond to solutions of our original equation: Output:

[(1, 1, 13), (2, 1, 15)]

These solutions can be verified:

 $(1, 1, 13): 8^1 + 161^1 = 8 + 161 = 169 = 13^2.$ $(2, 1, 15): 8^2 + 161^1 = 64 + 161 = 225 = 15^2.$

Comparing the outputs, we can see that our function correctly identified the points (2 : 13 : 1) and (4 : 15 : 1) from the first curve as solutions, corresponding to $t = 2 = 2^1$ and $t = 4 = 2^2$, respectively. It ignored the points with negative t values and the point (190 : 2619 : 1) where t is not a power of 2. For the second curve (y = 2), no solutions were found as none of the t values are powers of 2.

We extended this analysis to various prime pairs (p, q) where n = pq. Table 1 presents the additional solutions (beyond the trivial solution (x, y, z) = (1, 0, 3)) for prime pairs (p, q) with p < q < 200.

252

Exploring $8^x + n^y = z^2 \dots$

Table 1: Additional Solutions to $8^x + (pq)^y = z^2$ for Odd Prime Pairs (p,q)with p < q < 200

(p,q)	(x,y,z)	(p,q)	(x,y,z)
(3, 5)	(0, 1, 4), (2, 2, 17)	(31, 191)	(1, 1, 77)
(3, 19)	(2, 1, 11)	(37, 53)	(2, 1, 45)
(3, 43)	(4, 1, 65)	(41, 43)	(0, 1, 42)
(3, 131)	(4, 1, 67)	(41, 97)	(3, 1, 67)
(5, 7)	(0, 1, 6)	(41, 137)	(1, 1, 75)
(7, 23)	(1, 1, 13), (2, 1, 15)	(41, 193)	(1, 1, 89)
(7, 31)	(1, 1, 15), (3, 1, 27)	(43, 59)	(2, 1, 51)
(7, 47)	(3, 1, 29)	(47, 79)	(1, 1, 61), (3, 1, 65), (5, 1, 191)
(7, 103)	(1, 1, 27), (5, 1, 183)	(53, 181)	(4, 1, 117)
(7, 167)	(3, 1, 41)	(59, 61)	(0, 1, 60)
(7, 191)	(3, 1, 43)	(67, 83)	(2, 1, 75)
(11, 13)	(0, 1, 12)	(71, 73)	(0, 1, 72)
(11, 139)	(4, 1, 75)	(71, 127)	(1, 1, 95)
(13, 29)	(2, 1, 21)	(71, 199)	(3, 1, 121), (4, 1, 135)
(17, 19)	(0, 1, 18)	(73, 89)	(2, 1, 81)
(17, 89)	(1, 1, 39), (3, 1, 45)	(73, 113)	(7, 1, 1451)
(23, 31)	(3, 1, 35)	(79, 103)	(3, 1, 93)
(23, 47)	(1, 1, 33)	(89, 193)	(3, 1, 133)
(23, 151)	(1, 1, 59), (4, 1, 87)	(97, 113)	(2, 1, 105)
(29, 31)	(0, 1, 30)	(101, 103)	(0, 1, 102)
(29, 157)	(4, 1, 93)	(103, 191)	(5, 1, 229)
(31, 47)	(2, 1, 39), (5, 1, 185)	(107, 109)	(0, 1, 108)
(31, 71)	(1, 1, 47), (5, 1, 187)	(127, 199)	(1, 1, 159)
(31, 79)	(7, 1, 1449)	(137, 139)	(0, 1, 138)
(149, 151)	(0, 1, 150)	(179, 181)	(0, 1, 180)
(151, 167)	(2, 1, 159)	(181, 197)	(2, 1, 189)
(157, 173)	(2, 1, 165)	(191, 193)	(0, 1, 192)
(163, 179)	(2, 1, 171)	(197, 199)	(0, 1, 198)

This computational method, combining direct elliptic curve calculations with our specialized function, allows for efficient exploration of solutions across various values of n, providing a powerful tool for studying the properties and patterns of the equation $8^x + n^y = z^2$.

References

- M.A. Bennett, C.M. Skinner, Ternary Diophantine equations via Galois representations and modular forms, *Canadian Journal of Mathematics*, 56, no. 1, (2004), 23–54.
- [2] B. Sroysang, More on the Diophantine equation $8^x + 19^y = z^2$. International Journal of Pure and Applied Mathematics, **81**, no. 4, (2012), 601–604.
- [3] J.F.T. Rabago, On an open problem by B. Sroysang, Konural Journal of Mathematics, 1, no. 2, (2013), 30–32.
- [4] B. Sroysang, On the Diophantine equation $8^x + 13^y = z^2$, International Journal of Pure and Applied Mathematics, **90**, no. 1, (2014), 69–72.
- [5] L. Qi, X. Li, The Diophantine Equation $8^x + p^y = z^2$, The Scientific World Journal, (2015), 306590. https://doi.org/10.1155/2015/306590
- [6] K. Manikandan, R. Venkatraman, On the Exponential Diophantine Equation $8^x + 161^y = z^2$, International Journal of Mathematics and Computer Science, **19**, no. 4, (2024), 1101–1104.
- [7] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 10.4), 2024, https://www.sagemath.org
- [8] C. Panraksa, A Note on the Exponential Diophantine Equation $8^x + 161^y = z^2$, International Journal of Mathematics and Computer Science, **20**, no. 1, (2025), 41–43.