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Abstract

In this paper, we introduce the notion of rarely (τ1, τ2)-continuous
functions. Some characterizations of rarely (τ1, τ2)-continuous func-
tions are also investigated.

1 Introduction

In 1979, Popa [10] introduced and investigated an important concept of rare
continuity as a generalization of weak continuity due to Levine [7]. This
concept has been further studied by Long and Herrington [8] and Jafari [6].
Jafari [5] also generalized the concept of rare continuity to rare β-continuity
by involving the notion of β-open sets. Caldas [3] introduced a new class of
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functions called rarely βθ-continuous functions by utilizing the notion of β-
θ-open sets and investigated some characterizations of rarely βθ-continuous
functions. Jafari [4] introduced and studied the concept of rare α-continuity
as a generalization of rare continuity and weak α-continuity [9]. In this
paper, we introduce the notion of rarely (τ1, τ2)-continuous functions. We
also investigate some characterizations of rarely (τ1, τ2)-continuous functions.

2 Preliminaries

Throughout this paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and
Y ) always mean bitopological spaces on which no separation axioms are
assumed unless explicitly stated. Let A be a subset of a bitopological space
(X, τ1, τ2). The closure of A and the interior of A with respect to τi are
denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a
bitopological space (X, τ1, τ2) is called τ1τ2-closed [2] if A = τ1-Cl(τ2-Cl(A)).
The complement of a τ1τ2-closed set is called τ1τ2-open. The intersection of
all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [2] of A and
is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained
in A is called the τ1τ2-interior [2] of A and is denoted by τ1τ2-Int(A). A
subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)r-open [11]
if A = τ1τ2-Int(τ1τ2-Cl(A)). A subset R of a bitopological space (X, τ1, τ2) is
called a τ1τ2-rare set if τ1τ2-Int(R) = ∅.

Lemma 2.1. Let (X, τ1, τ2) be a bitopological space. Then, τ1τ2-Int(F∪R) ⊆
F for every τ1τ2-rare set R and every τ1τ2-closed set F .

3 Rarely (τ1, τ2)-continuous functions

We begin this section by introducing the notion of rarely (τ1, τ2)-continuous
functions.

Definition 3.1. A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be rarely
(τ1, τ2)-continuous at x ∈ X if for each σ1σ2-open set V of Y containing f(x),
there exists a σ1σ2-rare set RV with V ∩RV = ∅ and a τ1τ2-open set U of X
containing x such that f(U) ⊆ V ∪RV . A function f : (X, τ1, τ2) → (Y, σ1, σ2)
is called rarely (τ1, τ2)-continuous if f has this property at each point of X.

Theorem 3.2. For a function f : (X, τ1, τ2) → (Y, σ1, σ2), the following
properties are equivalent:
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(1) f is rarely (τ1, τ2)-continuous at x ∈ X;

(2) for each σ1σ2-open set V of Y containing f(x), there exists a σ1σ2-rare
set RV with V ∩ RV = ∅ such that x ∈ τ1τ2-Int(f

−1(V ∪RV ));

(3) for each σ1σ2-open set V of Y containing f(x), there exists a σ1σ2-rare
set RV with σ1σ2-Cl(V ) ∩RV = ∅ such that

x ∈ τ1τ2-Int(f
−1(σ1σ2-Cl(V ) ∪ RV ));

(4) for each (σ1, σ2)r-open set V of Y containing f(x), there exists a σ1σ2-
rare set RV with V ∩ RV = ∅ such that x ∈ τ1τ2-Int(f

−1(V ∪RV ));

(5) for each σ1σ2-open set V of Y containing f(x), there exists a τ1τ2-open
set U of X containing x such that σ1σ2-Int(f(U) ∩ (Y − V )) = ∅;

(6) for each σ1σ2-open set V of Y containing f(x), there exists a τ1τ2-open
set U of X containing x such that σ1σ2-Int(f(U)) ⊆ σ1σ2-Cl(V ).

Proof. (1) ⇒ (2): Let V be any σ1σ2-open set of Y containing f(x). By (1),
there exists a σ1σ2-rare set RV with V ∩RV = ∅ and a τ1τ2-open set U of X
containing x such that f(U) ⊆ V ∪ RV . Thus, x ∈ U ⊆ f−1(V ∪ RV ) and
hence x ∈ τ1τ2-Int(f

−1(V ∪RV )).
(2) ⇒ (3): Let V be any σ1σ2-open set of Y containing f(x). By (2),

there exists a σ1σ2-rare set RV with V ∩RV = ∅ such that

x ∈ τ1τ2-Int(f
−1(V ∪ RV )).

Let R′

V
= RV ∩ (Y − σ1σ2-Cl(V )). Then, we have R′

V
∩ σ1σ2-Cl(V ) = ∅ and

R′

V
is a σ1σ2-rare set. Since

σ1σ2-Cl(V ) ∪ R′

V
= σ1σ2-Cl(V ) ∪ [RV ∩ (Y − σ1σ2-Cl(V ))]

= σ1σ2-Cl(V ) ∪RV ⊇ V ∪RV .

Thus, x ∈ τ1τ2-Int(f
−1(V ∪RV )) ⊆ τ1τ2-Int(f

−1(σ1σ2-Cl(V ) ∪ R′

V
)).

(3) ⇒ (4): Let V be any (σ1, σ2)r-open set of Y containing f(x). By (3),
there exists a σ1σ2-rare set RV with σ1σ2-Cl(V ) ∩ RV = ∅ such that

x ∈ τ1τ2-Int(f
−1(σ1σ2-Cl(V ) ∪ RV )).

Let R′′

V
= RV ∪ (σ1σ2-Cl(V )− V ). By Lemma 2.1, R′′

V
is a σ1σ2-rare set and

R′′

V
∩ V = ∅. Thus, x ∈ τ1τ2-Int(f

−1(V ∪R′′

V
)).
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(4) ⇒ (5): Let V be any σ1σ2-open set of Y containing f(x). Then,
f(x) ∈ V ⊆ σ1σ2-Int(σ1σ2-Cl(V )) and σ1σ2-Int(σ1σ2-Cl(V )) is (σ1, σ2)r-
open. By (4), there exists a σ1σ2-rare set RV with

σ1σ2-Int(σ1σ2-Cl(V )) ∩RV = ∅

and x ∈ τ1τ2-Int(f
−1(σ1σ2-Int(σ1σ2-Cl(V )) ∪RV )). There exists a τ1τ2-open

set U of X containing x such that x ∈ U ⊆ f−1(σ1σ2-Int(σ1σ2-Cl(V ))∪RV ).
Thus, f(U) ⊆ σ1σ2-Int(σ1σ2-Cl(V )) ∪ RV and by Lemma 2.1, we have

σ1σ2-Int(f(U) ∩ (Y − V )) = σ1σ2-Int(f(U)) ∩ σ1σ2-Int(Y − V )

⊆ σ1σ2-Int(σ1σ2-Cl(V ) ∪ RV ) ∩ (Y − σ1σ2-Cl(V ))

⊆ (σ1σ2-Cl(V ) ∪ σ1σ2-Int(RV )) ∩ (Y − σ1σ2-Cl(V ))

= σ1σ2-Cl(V ) ∩ (Y − σ1σ2-Cl(V )) = ∅

and hence σ1σ2-Int(f(U) ∩ (Y − V )) = ∅.
(5) ⇒ (6): Let V be any σ1σ2-open set of Y containing f(x). Then by

(5), there exists a τ1τ2-open set U of X containing x such that

σ1σ2-Int(f(U) ∩ (Y − V )) = ∅.

Thus, σ1σ2-Int(f(U)) ∩ (Y − σ1σ2-Cl(V )) = ∅ and hence σ1σ2-Int(f(U)) ⊆
σ1σ2-Cl(V ).

(6) ⇒ (1): Let x ∈ X and V be any σ1σ2-open set of Y containing
f(x). By (6), there exists a τ1τ2-open set U of X containing x such that
σ1σ2-Int(f(U)) ⊆ σ1σ2-Cl(V ). Let MV = f(U) ∩ (Y − V ). Then, we have

σ1σ2-Int(MV ) ⊆ σ1σ2-Int(f(U)) ∩ σ1σ2-Int(Y − V )

= σ1σ2-Int(f(U)) ∩ (Y − σ1σ2-Cl(V )) = ∅.

Therefore, MV is a σ1σ2-rare set and MV ∩V = ∅. Let NV = σ1σ2-Cl(V )−V .
Then, NV is a σ1σ2-closed σ1σ2-rare set such that NV ∩ V = ∅. Thus, RV =
MV ∪NV is a σ1σ2-rare set and RV ∩V = ∅. By Lemma 2.1, σ1σ2-Int(RV ) =
σ1σ2-Int(σ1σ2-Int(RV )) = σ1σ2-Int(σ1σ2-Int(MV ∪NV )) ⊆ σ1σ2-Int(NV ) = ∅.
Therefore,

f(U) = [f(U)− σ1σ2-Int(f(U))] ∪ σ1σ2-Int(f(U))

⊆ [f(U)− σ1σ2-Int(f(U))] ∪ σ1σ2-Cl(V )

= [(f(U) ∩ (V ∪ (Y − V )))− σ1σ2-Int(f(U))] ∪ [(σ1σ2-Cl(V )− V ) ∪ V ]

= [((f(U) ∩ V ) ∪ (f(U) ∩ (Y − V )))− σ1σ2-Int(f(U))] ∪ (NV ∪ V )

⊆ [V ∪ (f(U) ∩ (Y − V ))] ∪ (NV ∪ V )

= V ∪ (MV ∪NV ) = V ∪ RV .
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Thus, there exists a σ1σ2-rare set RV = MV ∪NV such that RV ∩ V = ∅ and
f(U) ⊆ V ∪RV . This shows that f is rarely (τ1, τ2)-continuous at x ∈ X .
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