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Abstract

In this paper, we investigate some characterizations of upper and
lower almost nearly (τ1, τ2)-continuous multifunctions by utilizing the
τ1τ2-δ-closure operator.

1 Introduction

In 2003, Ekici [5] introduced and studied the concept of nearly continuous
multifunctions. Moreover, Ekici [4] introduced and investigated the notion of
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almost nearly continuous multifunctions as a generalization of nearly continu-
ous multifunctions and almost continuous multifunctions [7]. Noiri and Popa
[6] introduced and studied the notion of almost nearly m-continuous mul-
tifunctions as multifunctions from a set satisfying some minimal conditions
into a topological space. Chutiman et al. [3] defined upper almost nearly
(τ1, τ2)-continuous multifunctions and lower almost nearly (τ1, τ2)-continuous
multifunctions. In this paper, we investigate several characterizations of up-
per almost nearly (τ1, τ2)-continuous multifunctions and lower almost nearly
(τ1, τ2)-continuous multifunctions by utilizing the τ1τ2-δ-closure operator.

2 Preliminaries

Throughout the paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and
Y ) always mean bitopological spaces on which no separation axioms are
assumed unless explicitly stated. Let A be a subset of a bitopological space
(X, τ1, τ2). The closure of A and the interior of A with respect to τi are
denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a
bitopological space (X, τ1, τ2) is called τ1τ2-closed [2] if A = τ1-Cl(τ2-Cl(A)).
The complement of a τ1τ2-closed set is called τ1τ2-open. The intersection of
all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [2] of A and
is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained
in A is called the τ1τ2-interior [2] of A and is denoted by τ1τ2-Int(A). A
subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)r-open [9] if
A = τ1τ2-Int(τ1τ2-Cl(A)). The complement of a (τ1, τ2)r-open set is called
(τ1, τ2)r-closed. A subset A of a bitopological space (X, τ1, τ2) is said to be
τ1τ2-δ-open [1] if A is the union of (τ1, τ2)r-open sets of X . The complement
of a τ1τ2-δ-open set is called τ1τ2-δ-closed [1]. The union of all τ1τ2-δ-open
sets of X contained in A is called the τ1τ2-δ-interior [1] of A and is denoted
by τ1τ2-δ-Int(A). The intersection of all τ1τ2-δ-closed sets of X containing A

is called the τ1τ2-δ-closure [1] of A and is denoted by τ1τ2-δ-Cl(A). A subset
A of a bitopological space (X, τ1, τ2) is said to be N (τ1, τ2)-closed [8] if every
cover of A by (τ1, τ2)r-open sets of X has a finite subcover.

By a multifunction F : X → Y , we mean a point-to-set correspondence
from X into Y , and we always assume that F (x) 6= ∅ for all x ∈ X . For a
multifunction F : X → Y , we shall denote the upper and lower inverse of a
set B of Y by F+(B) and F−(B), respectively, that is,

F+(B) = {x ∈ X | F (x) ⊆ B}

and F−(B) = {x ∈ X | F (x) ∩ B 6= ∅}.
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3 Characterizations of upper and lower al-

most nearly (τ1, τ2)-continuous multifunctions

In this section, we investigate some characterizations of upper almost nearly
(τ1, τ2)-continuous multifunctions and lower almost nearly (τ1, τ2)-continuous
multifunctions.

Definition 3.1. [3] A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said
to be upper almost nearly (τ1, τ2)-continuous at a point x ∈ X if for each
σ1σ2-open set V of Y containing F (x) and having N (σ1, σ2)-closed comple-
ment, there exists a τ1τ2-open set U of X containing x such that F (U) ⊆
σ1σ2-Int(σ1σ2-Cl(V )). A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said
to be upper almost nearly (τ1, τ2)-continuous if F has this property at every
point of X.

Lemma 3.2. [3] For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the fol-
lowing properties are equivalent:

(1) F is upper almost nearly (τ1, τ2)-continuous;

(2) F+(V ) ⊆ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(V )))) for every σ1σ2-open set

V of Y having N (σ1, σ2)-closed complement;

(3) τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(K)))) ⊆ F−(K) for every N (σ1, σ2)-closed

and σ1σ2-closed set K of Y ;

(4) τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B))))) ⊆ F−(σ1σ2-Cl(B)) for ev-

ery every subset B of Y having the N (σ1, σ2)-closed σ1σ2-closure;

(5) F+(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F
+(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(B))))) for

every every subset B of Y such that Y − σ1σ2-Int(B) is N (σ1, σ2)-
closed;

(6) F+(V ) is τ1τ2-open in X for every (σ1, σ2)r-open set V of Y having
N (σ1, σ2)-closed complement;

(7) F−(K) is τ1τ2-closed in X for every N (σ1, σ2)-closed and (σ1, σ2)r-
closed set K of Y .

Theorem 3.3. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the follow-
ing properties are equivalent:

(1) F is upper almost nearly (τ1, τ2)-continuous;
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(2) τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-δ-Cl(B))))) ⊆ F−(σ1σ2-δ-Cl(B)) for

every subset B of Y having the N (σ1, σ2)-closed σ1σ2-δ-closure;

(3) τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B))))) ⊆ F−(σ1σ2-δ-Cl(B)) for

every subset B of Y having the N (σ1, σ2)-closed σ1σ2-δ-closure.

Proof. (1) ⇒ (2): Let B be any subset of Y such that σ1σ2-δ-Cl(B) is
N (σ1, σ2)-closed. By Lemma 3.2 of [1], σ1σ2-δ-Cl(B) is σ1σ2-closed. Then,
σ1σ2-δ-Cl(B) is σ1σ2-closed and N (σ1, σ2)-closed. Thus by Lemma 3.2,

τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-δ-Cl(B))))) ⊆ F−(σ1σ2-δ-Cl(B)).

(2) ⇒ (3): This is obvious since σ1σ2-Cl(B) ⊆ σ1σ2-δ-Cl(B) for every
subset B of Y .

(3) ⇒ (1): Let K be any N (σ1, σ2)-closed and (σ1, σ2)r-closed set of
Y . By (3), we have τ1τ2-Cl(F

−(K)) = τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(K)))) =

τ1τ2-Cl(F
−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(K))))) ⊆ F−(σ1σ2-δ-Cl(K)) = F−(K)

and hence F−(K) is τ1τ2-closed in X . By Lemma 3.2, F is upper almost
nearly (τ1, τ2)-continuous.

Definition 3.4. [3] A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is said
to be lower almost nearly (τ1, τ2)-continuous at a point x ∈ X if for each
σ1σ2-open set V of Y such that F (x) ∩ V 6= ∅ and having N (σ1, σ2)-closed
complement, there exists a τ1τ2-open set U of X containing x such that
σ1σ2-Int(σ1σ2-Cl(V )) ∩ F (z) 6= ∅ for each z ∈ U . A multifunction F :
(X, τ1, τ2) → (Y, σ1, σ2) is said to be lower almost nearly (τ1, τ2)-continuous
if F has this property at every point of X.

Theorem 3.5. For a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2), the follow-
ing properties are equivalent:

(1) F is lower almost nearly (τ1, τ2)-continuous;

(2) τ1τ2-Cl(F
+(σ1σ2-Cl(σ1σ2-Int(σ1σ2-δ-Cl(B))))) ⊆ F+(σ1σ2-δ-Cl(B)) for

every subset B of Y having the N (σ1, σ2)-closed σ1σ2-δ-closure;

(3) τ1τ2-Cl(F
+(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B))))) ⊆ F+(σ1σ2-δ-Cl(B)) for

every subset B of Y having the N (σ1, σ2)-closed σ1σ2-δ-closure.

Proof. The proof is similar to that of Theorem 3.3.
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