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Abstract

In this piece of work, we show that independent sets are preserved

in the join operation of graphs. The adjacency property of the join

of graphs guarantees a nice representation of the independent neigh-

borhood polynomial of the join of graphs in terms of the independent

neighborhood polynomials of graphs being considered.

1 Introduction

The study of polynomials as graph representation captured a lot of attention
recently because of the applications of these representations in other fields
of science such as Chemistry, Biology, and Physics [3]. In 1994, Hoede and
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Li [4] established the independent set polynomial of graphs which counts
the number of independent subsets of the vertex-set of a graph. In 2023,
Arriesgado, Salim and Artes Jr. [2] investigated the common neighborhood
polynomial of the join of graph.

A subset S of V (G) is said to be independent in G if the elements of S are
pairwise non-adjacent in G. If v ∈ V (G), the open neighborhood or simply
the neighborhood of v in G is the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}. For
a subset S of V (G), the neighborhood system of S in G is the set NG(S) =
⋃

s∈S

NG(s) \ S [2].

The independent neighborhood polynomial of a graph G of order n in the
indeterminates x and y, denoted by Γin(G; x, y), is given by

Γin(G; x, y) =

n−1
∑

j=0

α(G)
∑

i=1

αij(G)xiyj,

where αij(G) is the number of independent subsets of V (G) of cardinality i

with neighborhood system cardinality equal to j and α(G) is the indepen-
dence number of G. This concept was first introduced by Amiruddin-Rajik
et al. [1].

2 Results

The following result characterizes the independent subsets of complete q-
partite graphs.

Lemma 2.1. Consider a natural number q ≥ 3 and an increasing sequence

〈ri〉
q
i=1 of natural numbers. A subset S of V (Kr1,r2,...,rq) is independent in

Kr1,r2,...,rq if and only if S ⊆ Vi for some partite set Vi of Kr1,r2,...,rq .

Proof. Note that for each i ∈ {1, 2, . . . , q}, the elements of Vi are mutually
non-adjacent, and so does any subset of Vi. If for i 6= j, S contains an element
of Vi and an element of Vj, then S will not be independent.

Conversely, assume that S ⊆ Vi for some i ∈ {1, 2, . . . , q}. Since Vi is
independent, S is also independent in Vi being a subset of an independent
set. The adjacency property of Kr1,r2,...,rq asserts that S is independent in
Kr1,r2,...,rq .

Next, we establish the polynomial representation for the neighborhood
systems of independent sets in complete q-partite graphs.
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Theorem 2.2. Suppose that 〈ri〉
q
i=1 is an increasing sequence of natural num-

bers where q ≥ 3. Then

Γin(Kr1,r2,...,rq ; x, y) =

q
∑

i=1

[(1 + x)ri − 1]y
∑

j 6=i rj .

Proof. Assume that S is a subset of the vertex set of Kr1,r2,...,rq . Further,
assume that S is independent in Kr1,r2,...,rq . Then by Lemma 2.1, S ⊆ Vi for
some i ∈ {1, 2, . . . , q}. The independence of Vi asserts that there are exactly
(

ri

k

)

independent subsets of Vi for each 1 ≤ i ≤ q and for 1 ≤ k ≤ ri. If

S ⊆ Vi, then the neighborhood system of S in Kr1,r2,...,rq is the set
⋃

j 6=i

Vj =

V (Kr1,r2,...,rq) \ Vi. The cardinality of this set is

∣

∣

∣

∣

∣

⋃

j 6=i

Vj

∣

∣

∣

∣

∣

=
∑

j 6=i

rj . For each

independent set S ⊂ Vi, this gives x
|S|y

∑
j 6=i rj . Thus,

Γin(Kr1,r2,...,rq ; x, y) =

q
∑

i=1

ri
∑

k=1

(

ri

k

)

xky
∑

j 6=i rj

=

q
∑

i=1

[

ri
∑

k=1

(

ri

k

)

xk

]

y
∑

j 6=i rj

=

q
∑

i=1

[(1 + x)ri − 1]y
∑

j 6=i rj .

This completes the proof.

The next lemma establishes the independence-preserving property of the
join of graphs.

Lemma 2.3. A subset S of V (G⊕H) is independent in G⊕H if and only if

S is an independent subset of V (G) or S is an independent subset of V (H).

Proof. Assume that S is independent in G ⊕ H . Suppose {u, v} ⊆ S with
u ∈ V (G) and v ∈ V (H). Then uv ∈ V (G⊕ H) by the adjacency property
of the join operation of graphs. This implies that either S is contained in
V (G) or S is contained in V (H). Hence, either S is an independent subset
of V (G) or S is an independent subset of V (H).

Conversely, assume that S is an independent subset of V (G) or S is an
independent subset of V (H). Then the adjacency property of G⊕H asserts
that S is independent in G⊕H .
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The next result establishes the polynomial representation of the join of
graphs with respect to independent neighborhood systems.

Theorem 2.4. Let G and H be non-trivial graphs. Then

Γin(G⊕H ; x, y) = Γin(G; x, y)y|V (H)| + Γin(H ; x, y)y|V (G)|.

Proof. Consider a subset S of the vextex-set of the join G⊕H . Suppose that
S be an independent in G⊕H . Now, Lemma 2.3 asserts that either S is an
independent set in G or S is an independent set in H . If S is an independent
set in G, then NG⊕H(S) = NG(S)∪ V (H). This gives the first term. Similar
arguement holds when the set S is an independent set in H . This gives the
second term. The proof is complete.
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