International Journal of Mathematics and Computer Science Volume **20**, Issue no. 1, (2025), 383–386 DOI: https://doi.org/10.69793/ijmcs/01.2025/albakaa

A New Encryption Scheme Based on DNA and Polynomials with More Security

 $\binom{M}{CS}$

Fatimah H. Albakaa¹, Hassan Rashed Yassein²

¹Department of Mathematics Faculty of Education for Women University of Kufa Al Najaf, Iraq

²Department of Mathematics College of Education University of Al-Qadisiyah Al-Qadisiyah, Iraq

Email: fatema.albakaa@atu.edu.iq, hassan.yaseen@qu.edu.iq

(Received October 20, 2024, Accepted November 22, 2024, Published November 23, 2024)

Abstract

In this paper, we develop a new method of encryption, using DNA and polynomials as public and private keys, which gives a very high level of security for both the private keys and the original message.

1 Introduction

It is known that one gram of DNA stores about 10 terabytes, as its ability to store information exceeds all known storage methods (electrical, optical, magnetic) [1]. DNA encryption is applied in information security and storage. Encryption carries and hides information and transmits data from one party to another. In 1999, Jehani et al. [2] proposed the idea of creating an encryption system based on DNA molecules. In 2011, Yunpeng et al.

Key words and phrases: DNA, polynomials, security level. AMS (MOS) Subject Classifications: 94A60, 68P25. ISSN 1814-0432, 2025, https://future-in-tech.net proposed a symmetric cryptosystem based on the DNA cryptosystem [3]. In 2022, Rahutomo et al. introduced the DNA encryption system integrated with the NTRU encryption system to enhance the security level [4].

2 FDNA Encryption

The proposed method FDNA can be described in follows:

2.1 Key Generation

First, a truncated polynomial ring $\varphi = Z[x]/(x^N - 1) = \{\text{polynomial of de$ $gree } N-1 \text{ with integer coefficients} \}$ is selected. Next, the recipient randomly chooses two polynomials $f \epsilon l_f$ and $g \epsilon l_g$ where $l_f = \{f \in \varphi | f \text{ has } d_f \text{ coeffi$ $cients equal 1, <math>(d_f - 1) \text{ equal } -1$, and 0 for other values}, $l_g = \{g \in \varphi | g \text{ has } d_g \text{ coefficients equal 1, } (d_g - 1) \text{ equal } -1 \text{ and 0 for other values} \}$ as private keys such that a polynomial f should have a multiplicative inverse with modulo p referred to as f_p , where p and N are relatively prime.

After that, the public key $\kappa = f_p * g_p \pmod{p}$ is computed. Choosing a private key \mathcal{X} in the form of a DNA sequence from databases in global centers specialized in genetic engineering and websites (GENBANK, EMBL, NCBI) (using Tables 1, 2, and 3 in [5]).

2.2 Encryption

The ciphertext is computed by the sender as follows:

1. According to Table 1, by converting a message \mathcal{M} into codons and using the key \mathcal{X} in Table 2 to get the English letters.

2. Writing the alphabetical sequence of English letters as a series of binary numbers.

3. Converting the binary series obtained from step 2 into a polynomial called $\mathcal{T} \in \varphi$.

4. Using the public key κ to obtain C by the following formula:

$$\mathbf{C} = \kappa * \mathcal{T} \pmod{p}.$$

5. Converting C into a chain of series of binary numbers.

6. Converting the result of step 5 into a string of nitrogenous bases by Table 3 that represents the ciphertext \mathcal{E} .

2.3 Decryption

After receiving the ciphertext \mathcal{E} from the recipient, the original message is obtained through the following steps:

1. Converting the string of nitrogenous bases \mathcal{E} into the binary system chain by Table 3.

2. Converting the result of step 1 to polynomial C.

3. Computing $\mathcal{D} = g * f * \mathsf{C} \pmod{p}$.

4. Converting the polynomial \mathcal{D} to binary series.

5. Using key \mathcal{X} with English alphabet according Table 2 to getting codons.

6. Using Table 1, converting codons to English letters to get the message \mathcal{M} .

3 Security Analysis

The three private keys in the proposed method are:

1) The key \mathcal{X} which is represented by codons and of length n with randomness.

2) The polynomials f and g of degree n with non-zero coefficients that determine the security level.

3) Given that there are only four letters A, C, G, and T in DNA, the key space is 4^n . For keys f and g, their spaces are $\frac{N!}{d_f!(d_f-1)!(N-2d_f+1)!}$ and $\frac{N!}{d_g!(d_g-1)!(N-2d_g+1)!}$.

Therefore, through a brute force attack, the security level is either $4^n \frac{N!}{d_f!(d_f-1)!(N-2d_f+1)!}$ or $4^n \frac{N!}{d_g!(d_g-1)!(N-2d_g+1)!}$.

References

- G. Cui, Y. Liu, X. Zhang, New direction of data storage: DNA molecular storage technology, Computer Engineering and Application, 42, no. 26, (2006), 29–32.
- [2] A. Gehani, T. LaBean, J. Reif, DNA-based cryptography, Proceedings pf the 5th DIMACS Workshop on DNA Based Computers, (1999).
- [3] Z. Yunpeng, Y. Zhu, W. Zhong, R. O. Sinnott, Index-based symmetric DNA encryption algorithm. In the 2011 4th International Congress on Image and Signal Processing, (2011), 2290–2294.

- [4] U.Y. Satriyo, F. Rahutomo, B. Harjito, H. Prasetyo, DNA Cryptography Based on NTRU Cryptosystem to Improve Security. In the 2022 IEEE 8th Information Technology International Seminar, (2022), 27–31.
- [5] A.A. Abidulzahra, Designing Secure Public Key Cryptosystems Based on NTRU and DNA, M. Sc. thesis, University of Al-Qadisiyah, Iraq, (2024).