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Abstract

The purpose of this study is to compare population methods. We
present the genetic algorithms and particle swarm algorithm of non-
linear optimization which include two classes of heuristic algorithms
for solving n-dimensional mathematical optimization problems. This
work suggests a new hybrid algorithm which is nests particle swarm
optimization (PSA) operations in the genetic algorithm (GA). The
new hybrid algorithm provides a better convergence between the ex-
ploitation compared and exploration of both parent algorithms. How-
ever, the existing hybrid algorithms and achieving consistency provide
the best accurate results of the optimal solution with relatively small
computational cost.

1 Introduction

The purpose of optimization is to select the optimal values of variables that
give the maximum or minimum value of the objective function (cost function)
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within the constraints of inequality and equality [1]. In recent years, opti-
mization has become increasingly popular with the growing need for quick
and exact answers to complex issues in several fields including science, de-
sign, manufacturing, Applied Mathematics, and heuristic algorithms. There
are two main types of heuristic algorithms: The Particle Swarm and Genetic
Algorithm. The Particle Swarm Optimization algorithm (PSO), originally
introduced in 1995, is based on flocks of birds and schools of fish [3]. The
particle swarm consists of randomly initiated candidate solutions, or parti-
cles, that move in a multidimensional space. Each particle has a velocity
and so information about the best position in a neighborhood is quite impor-
tant. The first Genetic Algorithm (GA) was used in 1975 by J. H. Holland.
It is based on the idea of evolution through random mutation and natural
selection [6].

2 The Conic Heuristic algorithms of Opti-

mization

In conic optimization, there are different ways to present the duality of solu-
tion of large-scale optimization problems with one strategy being partitioning
[5]. We can divide the variables into two subsets: In one subset, minimize
first while, in the other subset, fixing the variable [2].

minimize
x

f(x) + g(Bx)

subject to x ∈ IRn
(2.1)

where B is an m × n matrix, f : IRn → (−∞,∞] and g : IRm → (−∞,∞]
are proper convex functions. Suppose there exists a feasible solution; i.e., an
x ∈ IRn such that x ∈ dom(f) and Bx ∈ dom(g).

Then, the problem is equivalent to the constrained optimization problem.

minimize
x

f(x) + g(Bx)

subject to x1 ∈ dom(f) and Bx2 ∈ dom(g),

x2 = Bx1.

(2.2)

With the convex programming problem of the linear equality constraint
x2 = Bx1, we obtain the dual linear function as
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h(λ) = inf
x1∈dom(f) , Bx2∈dom(g)

{

f(x1) + g(x2) + λT (x2 − Bx1)
}

= inf
x1∈IRn

{

f(x1)− λTBx1)
}

+ inf
x2∈IRn

{

f(x2) + λTx2

}

= inf
x1∈IRn

{

− (BTλ)Tx1 − f(x1)
}

+ inf
x2∈IRn

{

− (−λ)Tx2 − g(x2)
}

= −sup
x1∈IRn

{

(BTλ)Tx1 − f(x1)
}

− sup
x2∈IRn

{

(−λ)Tx2 − g(x2)
}

= −f ∗(BTλ)− g∗(−λ).

(2.3)

Therefore,

max
λ

h(λ) = −f ∗(BTλ)− g∗(−λ).

The dual problem of maximizing h over λ ∈ IRn is converted to a mini-
mization problem by a sign change:

minimize
x

f ∗(BTλ) + g∗(−λ)

subject to λ ∈ IRm,
(2.4)

where f ∗ and g∗ are the conjugate functions of the functions f and g.
Moreover, f ∗ and h∗ represent the corresponding optimal dual and prime
values.

3 Numerical Result

We implement the numerical result based on Python software. The perfor-
mance of the new hybrid algorithm shows that the particle swarm algorithm
generally converges faster than genetic algorithms in the early iterations.
However, the particle swarm algorithm reaches a good optimal solution more
quickly, as seen by the steeper initial decline in the figure 1 where both al-
gorithms perform well on this simple sphere function. For more complex
problems, the particle swarm algorithm might show better robustness due to
its population-based approach and ability to maintain diversity (see Figure
(2). Both algorithms have similar computational requirements per iteration.
The choice between them may depend more on the specific problem charac-
teristics than on computational cost and Robustness.
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Figure 1: The Cost Function (Objective Function) of Particle Swarm Opti-
mization Via The Genetic Algorithm

Figure 2: Comparison Convergence of Particle Swarm Optimization Via The
Genetic Algorithm

4 Development of Theoratical Convergence

In this section, we present the heuristic algorithm optimizations as a subfield
of convex linear programming. Let Sn denote the set of symmetric n × n

matrices: Sn = {X ∈ IRn X = XT}[3].

Theorem 4.1. Consider the linear programming problem with probability
constraints which also can be the objective function as a cone optimization
programming



A New Hybrid Heuristic Algorithm... 369

(LP )















(min)x 〈c, x0〉
s.t. P

(

〈ai, x〉 ≤ ri

)

≥ H i = 1, . . . , m,

x ≥ 0, x ∈ R
n,

(4.5)

where 〈x, y〉 is the inner product of two vectors x and y in IRn, x ≥ 0 means
that xi ≥ 0, for i = 1, . . . , n, P be a probability measure. Then H ∈ [0.5, 1].

Proof.
First of all, we discuss the constraint P

(

〈ai, x〉 ≤ ri

)

≥ H , for given x ∈ IRn.

Assume ki = 〈ai, x〉, where ki ∈ IR is a scalar random variable which implies
the sum of Gaussian random variables with mean k̄i = 〈āi, x〉 and variance
βi = xT

∑

i xi. The probability can be computed with cumulative distribution

functions F : IR → [0, 1]. Then, with the random variable ki−k̄i√
βi

,

P

(

〈ai, x〉 ≤ ri

)

≥ H ⇐⇒
(ki − k̄i√

βi

≤
(ri − k̄i√

βi

)

= F
(ri − k̄i√

βi

)

.

Then, the feasible solution must satisfy the constraint F
(

ri−k̄i√
βi

)

≥ H. Assume

F−1 : [0, 1] → IR is the inverse of F . By the composition rule, we obtain

F
(ri − k̄i√

βi

)

≥ H ⇐⇒ F−1
(

F
(ri − k̄i√

βi

))

,

the inverse is the identity map based on the composition of the function.
Therefore,

F−1(H) ⇐⇒
(ri − k̄i√

βi

)

≥ F−1(H).

Multiplying both sides by
√
βi, we get

ri − k̄i ≥ F−1(H)
√

βi → ri − k̄i = ri − 〈ai, x〉 ,

which is an affine function of x. In fact,
√
βi =

√

xT
∑

i xi = ‖
∑

i

1

2xi‖2 by a
duality technique. Hence, the dual problem is

(DP )



















maxx 〈c, x〉

s.t ri − 〈ai, x〉 ≤ ri) ≥ F−1(H)‖
∑

i

1

2

xi‖2 i = 1, . . . , m,

x ≥ 0, x ∈ R
n,

(4.6)
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On the other hand, (H ≥ 0.5) such that (F−1(H) ≥ 0) that is defined as
cone optimization programming

Numerical Computation
Iteration Partical Swram

Algorithm Best
Genetic Algo-
rithm Best

1 50.836875 22.389485
2 103.450366 22.389485
3 10.346770 22.389485
16 0.028319 2.454720
17 0.044280 2.454720
18 0.002345 0.004567
19 0.002345 0.004567
20 0.002345 0.004567

Table 1: The Best fitness value found by PSA and GA up to that iteration

5 Conclusion

The aim of this study was to develop the hybrid approximate Algorithm
that converges faster. The strategy we used was to optimize the duality
over Gaussian random variables. This study depended on the population
methods: particle swarm algorithm and genetic algorithm. The implemented
method showed that the particle swarm algorithm outperforms the genetic
algorithm in terms of convergence speed and final solution quality to reach
the optimal solution region. The results provided the optimal solution to
the initial programming problem (LP) as a conic optimization, which is the
upper bound for solving the dual programming problem (DP).
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