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Abstract

We prove a multi direct comonotone theorem for the comonotone

approximation of piecewise monotone functions via multi polynomials.

1 Introduction

Approximating a piecewise monotone function by comonotone polynomials
has been a topic of intense study in recent years. Using comonotone poly-
nomials of degree less than or equal to n to approximate such a function f,
lliev [6] and Newman [8] showed that this isn’t worse than Cw

(

f, 1
n

)

(f, 1/n),
where C is an absolute constant dependent only on the quantity of changes
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in monotonicity of f . For functions that are only continuous, this rate of
approximation is known as the Jackson rate.

In this paper, we demonstrate that the error in the comonotone approxi-
mation fulfills the appropriate higher order Jackson estimate when the deriva-
tive of the piecewise monotone function is continuous. We prove the following
theorem.

Theorem 1.1. Suppose that g is a function that has continuous differentia-

bility in [−1, 1]Γ and monotonicity changes ℓ times, 1 ≤ ℓ < ∞, in [−1, 1]Γ.
Then ∀m ≥ 1, ∃ a multi polynomial vm of degree less or equal to m that is

comonotone with the function g(y) on [−1, 1]Γ and has the property that

‖g − Vm‖ ≤
K

mΓ
ω(g′,Ω), Ω =

(

1

m
, . . . ,

1

m

)

. (1.1)

where the constant K(ℓ,Γ) depends exclusively on ℓ and Γ.

Here, ‖ · ‖ is the usual sup norm of g and y = (y1, . . . , yΓ).

In 1977, DeVore [3] demonstrated that monotone polynomials of degree
less or equal to n with error 0

(

n−rω
(

f (r), 1
n

))

can approximate a mono-
tone function with r continuous derivatives. DeVore also provided a similar
conclusion for splines (for an alternative proof of DeVore’s spline result, see
Beatson [1]). Leviatan and Mhaskar [7] have found such an estimate for the
comonotone approximation by splines. Moreover, many researchers have also
worked on this topic [2, 4, 5].
In what follows, Πm refers to the collection of multi polynomials with de-
gree less or equal to m. In addition, K1, K2, . . . stand for constants that are
independent of g,m, and ℓ.

2 Proof of the basic result

The flipped function g̃, which undergoes one less change in monotonicity, is
evaluated in relation to the error in the comonotone multi-approximation.
The following lemma predicts the error in comonotone multi approximation
of g.

Lemma 2.1. There is a constant K1 that has the following characteristic:

Let g ∈ C1[−1, 1]Γ be a piecewise monotone multivariate function, with one
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change in monotonicity occurring at zero, where g has a zero, and all other

changes of the form ℓ ≥ 1. Define

g̃ (y1, . . . , yΓ) =

{

g (y1, . . . , yΓ) , ys ≥ 0
−g (y1, . . . , yΓ) , ys < 0

, s = 1, . . . ,Γ ,

and assume that a multi polynomial Vm ∈ Πm comonotone with g̃ exists for

some m ≥ 1 and ǫ > ω (g̃′,Ω) such that

‖g̃ − Vm‖ ≤ ǫ/mΓ, ‖g̃′ − V ′
m‖ ≤ ǫ. (2.2)

If so, a multi polynomial V2m ∈ Π2m comonotone exists whose g satisfies the

conditions

‖g − V2m‖ ≤ K1ǫ/m
Γ, ‖g′ − V ′

2m‖ ≤ K1ǫ. (2.3)

Proof. In comparison to g, g̃ has one fewer monotonicity change. ∀0 < |ys| <
hs/m, hs ≥ 1,

|g̃′ (y1, . . . , yΓ)| ≤ ω (g̃′, (|y1| , . . . , |yΓ|)) ≤ (h1 . . . hΓ)ω (g̃′,Ω) . (2.4)

Since g̃(0, . . . , 0) = 0,

|g̃ (y1, . . . , yΓ)| = |y1| . . . |yΓ| |g̃
′ (y1, . . . , yΓ)| ≤

(h2
1 . . . h

2
Γ)

mΓ
ω(g̃,Ω). (2.5)

Following DeVore [3], we create the approximation to sgn (y1, . . . , yΓ) for any
m > 1,

Wm (y1, . . . , yΓ) = wm (y1)+· · ·+wm (yΓ) ∋ wm (ys) = Km

∫ ys

0

(Hn (ts) /ts)
4 dts,

n is the largest odd integer to ensure Wm ∈ Πm andKm are selected to ensure
wm(1) = 1 such that Wm(1, . . . , 1) = wm(1) + · · ·+wm(1) = 1+ · · ·+1 = Γ.
Wm is monotone increasing, odd and has the property that

|sgn (y1, . . . , yΓ)−Wm (y1, . . . , yΓ)|

= |sgn (y1)− wm (y1) + · · ·+ sgn (yΓ)− wm (yΓ)|

≤ |sgn (y1)− wm (y1)|+ · · ·+ |sgn (yΓ)− wm (yΓ)|

≤ K2

(

|my1|
−3 + · · ·+ |myΓ|

−3) = K2

Γ
∑

s=1

|mys|
−3 , y ∈ [−1, 0)Γ ∪ (0, 1]Γ

|sgn (y1)− wm (y1)|+· · ·+|sgn (yΓ)− wm (yΓ)| ≤ 1+· · ·+1 = Γ, y ∈ [−1, 1]Γ.
(2.6)
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Given g̃(0, . . . , 0) = 0, we can assume that Vm(0, . . . , 0) = 0 and replace ǫ in
the first inequality of (2.2). Define

V2m =

∫ y1

0

. . .

∫ yΓ

0

V ′
m (t1, . . . , tΓ)Wm (t1, . . . , tΓ) dt1 . . . dtΓ.

Then V2m is comonotone with g, and

g (y1, . . . , yΓ)− V2m (y1, . . . , yΓ)

=

∫ y1

0

. . .

∫ yΓ

0

[g̃′ (t1, . . . , tΓ)− V ′
m (t1, . . . , tΓ)] sgn (t1, . . . , tΓ) dt1 . . . dtΓ

+

∫ y1

0

. . .

∫ yΓ

0

V ′
m (t1, . . . , tΓ) [sgn (t1, . . . , tΓ)−Wm (t1, . . . , tΓ)] dt1 . . . dtΓ

= (g̃ (y1, . . . , yΓ)−Wm (y1, . . . , yΓ)) sgn (y1, . . . , yΓ)

+

∫ y1

0

. . .

∫ yΓ

0

V ′
m (t1, . . . , tΓ) [sgn (t1, . . . , tΓ)−Wm (t1, . . . , tΓ)] dt1 . . . dtΓ.

(2.7)
Let ζ = (ζ1, . . . , ζΓ) ∋ ζs = sgn (ys/m) , s = 1, . . . ,Γ. If 0 < |ys| ≤ i/m, i ≥ 1
then by (2.2), (2.4), (2.6) and g̃′(0, . . . , 0) = 0 we get

∣

∣

∣

∣

∫ y1

0

. . .

∫ yΓ

0

V ′
m (t1, . . . , tΓ) [sgn (t1, . . . , tΓ)−Wm (t1, . . . , tΓ)] dt1 . . . dtΓ

∣

∣

∣

∣

≤

i−1
∑

hs=0
s=1,...,Γ

∣

∣

∣

∣

∫ (h1+1)ζ1

h1ζ1

. . .

∫ (hΓ+1)ζΓ

hΓζΓ

V ′
m (t1, . . . , tΓ) [sgn (t1, . . . , tΓ)

−Wm (t1, . . . , tΓ)] dt1 . . . dtΓ

∣

∣

∣

∣

≤
1

mΓ
[ω (g̃′,Ω) + ǫ] +

1

mΓ

i−1
∑

hh=1
s=1,...,Γ

[(h1 + 1) . . . (hΓ + 1)ω (g̃′,Ω) + ǫ]

×K3

(

h−3
1 . . . h−3

Γ

)

≤ K4
ǫ

mΓ
.

The first inequality in (2.3) is obtained by using (2.2) to estimate the other
term in (2.7).

In this context, we won’t provide the analogous proof for the second
inequality in equation (2.3).
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proof of theorem 1.1. When m is small, specifically m < M(ℓ), the theorem
becomes trivial because g′ (η1, . . . , ηΓ) = 0. Consequently,

|g (y1, . . . , yΓ)− g (η1, . . . , ηΓ)|

≤ |(y1 − η1) . . . (yΓ − ηΓ)| |g
′ (α1, . . . , αΓ)| ≤ 2Γω (g′, (2, . . . , 2))

≤ K(ℓ,Γ)
1

mΓ
ω (g′,Ω) .

We establish the theorem for large values ofm by induction using the number
of monotonicity changes as ℓ.

We look at the claim that constants K(ℓ) and M(ℓ) exist, for any mul-
tivariate function that is piecewise monotone g ∈ C1[−1, 1]Γ with ℓ ≥ 0
modifies monotonicity, which in [−1, 1]Γg′ has zeros (this assumption is only
required when ℓ = 0), and ∀m ≥ M(ℓ), there is a Vm ∈ Πm comonotone with
g satisfying

‖g − Vm‖ ≤ K(ℓ,Γ)
1

mΓ
ω (g′,Ω) , ‖g′ − V ′

m‖ ≤ K(ℓ,Γ)
1

mΓ
ω (g′,Ω) .

When ℓ = 0, the claim is true. Without loss of generlity, assume that g
vanishes at one of the zeros of g′ and then extend g via linear functions to
[−3, 3]p while maintaining the modulus of continuity of g′

Observe that max
{

‖g‖[−3,3]Γ,‖g
′‖[−3,3]Γ

}

≤ K5m
Γω (g′,Ω) and define

℧m (g, (y1, . . . , yΓ))

=

∫ 2

−2

. . .

∫ 2

−2

λm ((y1 − t1) , . . . , (yΓ − tΓ)) g (t1, . . . , tΓ) dt1 . . . dtΓ + am,

where {λm} is an appropriate sequence of kernels for positive multi polyno-
mials and
∫ 4

−4

. . .

∫ 4

−4

λm (t1, . . . , tΓ) = Γ,

∫ 4

−4

. . .

∫ 4

−4

λm (t1, . . . , tΓ) t
2
1 . . . t

2
Γ = 0

(

m−2d
)

,

and
‖λm‖[−4,4]Γ/[−1,1]Γ = 0

(

m−2d
)

.

So

℧
′
m (g, (y1, . . . , yΓ))

=

∫ 2

−2

. . .

∫ 2

−2

λm ((y1 − t1) , . . . , (yΓ − tΓ)) g
′ (t1, . . . , tΓ) dt1 . . . dtΓ

+ λm ((y1 + 2) , . . . , (yΓ + 2)) g(−2, . . . ,−2)

− λm ((y1 − 2) , . . . , (yΓ − 2)) g(2, . . . , 2) + am.
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Where
∣

∣

∣

∣

λm ((y1 + 2) , . . . , (yΓ + 2)) g(−2, . . . ,−2)

− λm ((y1 − 2) , . . . , (yΓ − 2)) g(2, . . . , 2)

∣

∣

∣

∣

≤ K6m
−Γω (g′,Ω) , y ∈ [−1, 1]Γ.

Providing am is suitably selected from ±K6m
−Γω (g′,Ω), ℧m(g), it is obvious

that it will include the necessary approximation features and has the same
constant monotonicity as g. We will demonstrate the proposition’s validity
for s by supposing that it is true for s − 1. Extend the definition of g to
include [−3, 3]Γ if it has monotonicity with ℓ ≥ 1 changes. g′(η) = 0 for some
η = (η1, . . . , ηΓ) ∈ (−1, 1)Γ because g has at least one turning point.

We can see that changing z = (z1, . . . , zΓ) =
1
2
((y1, . . . , yΓ)− (η1, . . . , ηΓ))

results in a function f (z1, . . . , zΓ) = g (y1, . . . , yΓ) defined for y ∈ [−1, 1]Γ

with a turning point at zero and ω (f ′,Ω) ≤ 4Γω (g′,Ω) when working with
J ⊆ [−3, 3]Γ of length 4Γ and centered at η.

It should be noted that ω
(

f̃ ′,Ω
)

≤ 2Γω (f ′,Ω) and f̃ possesses mono-

tonicity with ℓ−1 changes. A sequence {δm}
∞
m=2M(ℓ−1) of comonotone approx-

imations to f can be found by the lemma and the inductive hypothesis. The
statement for ℓ is proved true by inverting the sequence {Vm (y1, . . . , yΓ)},
Vm (y1, . . . , yΓ) = δm (z1, . . . , zΓ).

3 Conclusion

We derived the Jackson type theorem for the comonotone approximation of
piecewise monotone functions using multi polynomials.
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