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Abstract

Monkeypox virus leads to an infectious disease called Monkeypox
(mpox). This disease may cause painful rashes, swollen lymph nodes,
headaches and fever. Taking the vaccination for mpox can reduce
these symptoms and also prevent people from becoming seriously ill.
In this paper, we study the effect of vaccination on the (mpox) disease
by using the functional response (Holling type II). Some analyses are
made for the model and the results are confirmed by using a numerical
simulation.

1 Introduction

In recent years, a lot of research on of epidemic diseases has been done, but
the challenge is how to minimize the spread of these diseases through popu-
lation. To study the behavior of the diseases, a mathematical model is used
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[1]-[6]. Lasisi et al. [7] used ODE to improve a mathematical model transmis-
sion of Monkey-pox and the analysis of the model was investigated. Bhunu
et al. [8] represented the model as a non-linear differential equations sys-
tem. Then, they discussed the stability of the conditions for the disease-free
equilibrium. Sulaiman et al. [9] included the treatment and vaccination in
their model as control strategies. Using standard approaches, Olumuyiwa et
al. [10] used the mathematical model for Monkey-pox transmission dynam-
ics with both the fractional order and classical differential equations, and
also studied the disease stability. Furthermore, they discussed the behav-
ior of the system’s dynamic to find an adequate way to control the infection.
Some researchers have proposed their disease model with interaction function
(Holling types) interactions. For example, Banshidar and Swarup [11] stud-
ied prey-predator diseases with general Holling type interactions. They drive
the local and global stability for the system and they got the permanence and
impermanence conditions of the system. Ruiqing et al. [12] used a dynamical
analysis with Holling IT functional response for Hepatitis B virus to describe
a fractional-order model while the response function (Holling function type
IT) used on predator-prey model by Jean et al. [13].

2 Mathematical Model

In this section, we describe the mathematical model for (mbox) infectious
disease. Assuming that the whole human population N(¢) is subdivided
into five sub-compartments, which are respectively, susceptible S(t), exposed
E(t), infected I(t), vaccinated V(t), and recovered R(t). This gives us:
N(t)=S(t)+ E(t) + 1(t) + V(t) + R(t), with the initial conditions:

S(0) > 0, E(0) > 0,1(0) > 0,V(0) > 0 and R(0) > 0, (2.1)

and the nonlinear differential equation is:

- B(1—n)SI
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where A represents the recruitment rate and u is a parameter for death
due to natural causes. The susceptible population is exposed if they get
in contact with a member of the infected population through the rate (.
The vaccine will be effective when n = 1 and ineffective when n = 0. The
rate ay represents the exposed population that get infected. In the infected
population, some of them will die as a result of the disease, with rate v. The
rate v, represents the population that recovers while the rate p denotes the
population that have received the vaccine. Moreover, in the right-hand side
of model 2.2, the function is continuous and has continuous partial derivatives
on the following space:

RS ={(S,E,1,V,R) € R°: 5(0) > 0, E(0) > 0,1(0) > 0,V(0) > 0and R(0) > 0}.
(2.3)
Therefore, the solution of the system (2.2) exists and is unique.

2.1 Positivity and Boundedness

Theorem 2.1. All solutions S(t), E(t), I(t), V(t), R(t) starting from positive
initial conditions in equation 2.1, and for all time t > 0 stay positive.

Proof.
We have:

S |s—o= A,
pB(1—n)SI
14+al

I|j—o=axE, E>0

V |V:0: pS, S >0

R |go= "I, I >0.
Therefore, we get the non-negative solutions. Moreover, the last equation

is not dependent on the other equations and so we can leave out this equation
to reduce the system to:

E |pos= , S>01>0

(2.4)

o o Bl=n)SI

S=A—pS=pS ==

. pB(l—=n)SI

FE = W - ,ME - a2E7 (25)

I =B — (u+v+ )1,

V=pS—puV,
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Theorem 2.2. All the solutions of our model are uniformly bounded.

Proof.
The whole human population is:

N=S+E+I+V+R (2.6)
After substituting the equivalent equation from our model into each item in
equation 2.6 and by solving and simplifying it we get

A
supN (t) = m for each t > 0 (2.7)

3 Existence of Equilibrium Point

The first disease-free equilibrium point is denoted by lpg = (Spo, 0,0, Vio)-
Substituting this point in model 2.5 gives the following:
A A
S = Vo=t (38)

The endemic equilibrium point in model 2.5 is denoted by l1; = (S11, Ei1, I11, V1),
so from model 2.5 we can get

_ Aas(p+ plap+p) + Aaof(1 —n)[(p+ p) — 1] + [(1 + a2) (1 + 7 +72) (1 + p)]

on ot P+ p) + B — )]
(3.9)
Cpt Y+t reaAB(l —n) = (pt+a)(p+ v+ %)+ (1t p)
Bu=" (14 o) (i + 7 + ) [alu+ p) + B(1 = n)] (3.10)
7o @A —n) — (ptas)(ut+y+2) + (1 +p) (3.11)
Y (te)(pty+p)lalntp) + B(1—n)] ‘
v = PAaz(utpla(p + p) + AapB(L —n)[(p + p) — 1] + [(p+ az)(n + 7+ 3) (1 + p)]
Y az (i + p)le(u + p) + B(1L —n)]
(3.12)
with the conditions that leave Si1, E11, I11 and Vi positive:
(1) : Aag[alp +p) + B = n)] + (1 + p) > aaB(1 —n) (3.13)

(2) : AB(L—n) > (u+az)(p+7+72) (1 +p)
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4 Local and Global Stability

In this section we investigate the local and global stability for the equi-
librium points of model 2.5. Now, by using the Jacobian matrix for the
point(Sg, 0,0, Vo), we find that the local stability for the first point is sat-
isfied if (pu + co)(p + v+ 72) — aB(1 —n)S > 0 is satisfied, while the local
stability for the point (S11, E11, 11, V1) is satisfied with the conditions:

—apf(1 —n)S B(l—n)I —axfB(l—n)S
(nty+r)d+al)? (I+al) (p+a)(l+al)?)

)<~ o) - o

(4.14)
By using Lyapunov function (see [14]), we prove the equilibrium points
are globally stable.

)

max(

Theorem 4.1. The conditions below lead to the global asymptotic stability
of Loo
(L2 < BEPE (g S — g > 1. (4.15)
2 2 2

Proof.
By using Lyapunov function, we get

(S — 500)2 I (E— E00)2 I (I - IOO>2 4 (V= %0)2 (4.16)

Lon —
00 9 9 2 2

The derivative of Ly corresponding to the model solutions is

Loo ds dE dl av
0 _ (g — - — - - - — — (417
7 (S = Soo) 7 (£ — Eqp) 7 (I — Ioo) u (V' — Vo) i (4.17)
Now, we simplify the equation 4.17 to get
av 1—n)SI
(V= Vo)L = = [VEF (S = S0) — (V. — Vo] — (8 — S — 2L 15]
; 5

Therefore, equation 4.18 is Lyapunov function. This proves that the
conditions 4.15 are satisfied.

Theorem 4.2. Ly, has global asymptotic stability under the following con-
ditions:
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((15(0411)_(352111)) < § <(“+P) T %) (47 +7) (419)

<M)2 <2 {(M +p) + Ljﬂ} (1 + as) (4.20)

1+ al 3 14+ afl
2 B —n)I] p
—— | = 4.21
and )
5(1 — n)511
< 4.22
[(1+a[)(1+a[11)+a2 (nta)lutytag)  (422)
Proof.
To prove this case, we use the Lyapunov function as follows:
S — Si1)? E — E;)? I—1,)? V —Vi)?
LSS (BB (- V=V
2 2 2 2
The derivative of Lq; corresponding to the model solutions is
Ly ds dE dl av
—+(F—F I—1 V-W 4.24
o~ O S gr H gy H U= D)+ )Gy (429
By simplifying equation 4.24, we obtain:
L
LA B+ C 4 D (4.25)

dt

* S—S n)(S—5
A :_( : <('u+p 1+aI ) — (1+aI 1:2((5[11])11) ('u_‘_’y_‘_fh)(l
111)2
B* — _(5—511)2 ((M—l—p ‘l‘ B1+a[ >+B(1 n E(ll_j_l;)l()s Sl (E— E11) (M+a2)

= [M(wwwﬁhcﬁ) +(V = Va)(8 = Su)p — (V = Vir)u] -

(E— E11)2 (,U‘I'OZQ)

D* = ~(E — Eu)(I ~In) | rfrytirasm + 02 + (7 +72) 5

This yields a Lyapunov function and the conditions 4.19-4.22 are satisfied.
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5 Numerical Simulation

In this section, a numerical simulation is used to confirm our results and to
get a better understanding of the effects of Holling and vaccine parameters.
Figure 1 discussed the different values of @ = 0.1,0.01,0.001 and 0,0001
(Holling parameter). In Figure 1 (A), as @ = 0.1 (blue line) is big, the
number of susceptible population is big and it gets smaller and smaller as «
gets smaller. Therefore, by using Holling parameter we can keep the number
of susceptible population large, thus less people will get exposed or infected.
Figure 1 (B), represents the exposed population for different values of alpha.
As « gets smaller (blue line to black line), less people get infected as Figure
1 (C) shows. Figure 1(D) explains that as « tends to grow (blue line),
less communication will happen between the susceptible and infected people
therefore more people will have a chance to receive the vaccine. Different
values of p have been discussed in Figure 2, where Figure 2 (A) explains
that with the vaccine parameter p = 10 (black line), many people will have
the vaccine so they will move to the vaccination compartment. Meanwhile,
in Figure 2 (B) and 2 (C) the vaccine parameter has no effect because the
vaccination only works on susceptible individuals and not those who have
been exposed or already infected. For Figure 2 (D), we can see the effect of
the vaccination on people as p = 0.1,2,6, 10 moving from blue line to black
line respectively, indicating that more people will get the vaccine.

A: Susceptible Population B: Exposed Population C: Infected Population

Susceptible
Expo:

Infected

Time - Time

Time

Figure 1: Result of simulation, where A = 0.3, p = 04, n = 0.4, ay = 0.5.
w=0.5v=0.1,v =0.5 8 =0.01 with different values of «.
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A: Susceptible Population B: Exposed Population C: Infected Population

Susceptible

Infected

Expost

Time h : Time : : Time
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Figure 2: Result of simulation, where A = 0.3, n = 0.4, a = 0.01 as = 0.5.
iw=0.5v=0.1,v = 0.5, f = 0.01 with different values of p.

6 Concluding Remarks

Monkeypox virus (mpox) has been investigated in this paper . The effect
of the functional response (Holling type II) and the vaccination is discussed.
As the Holling function parameter gets large, disease transmission can be
somewhat controlled. Furthermore, increasing the value of the vaccination
parameter prevents people from contracting this virus. A numerical simula-
tion was used and confirmed our results.
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