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Abstract

A simple graph G on n vertices is partition-good if and only if
for all pairs (a, b) of positive integers such that a+b = n, V (G) can be
partitioned into sets A,B satisfying: |A| = a, |B| = b, and G[A], G[B]
are connected. G is partition-wonderful if and only if either (i)
n = 1, or (ii) n > 1, G is connected, and of all pairs (a, b) of positive
integers such that a + b = n, V (G) can be partitioned into sets A,B

satisfying: |A| = a, |B| = b, and G[A], G[B] are partition-wonderful.
We characterize the partition-good and the partition-wonderful among
the complete multipartite graphs, and, along the way, prove some
elementary results about these graph properties.

1 Introduction

All following graphs are finite and simple. A subgraph of a graphG is rainbow
with respect to a coloring of E(G) if and only if no color appears on more
than one edge of the subgraph. It is well known that if G is a connected
graph on n vertices, and E(G) is colored with n or more colors, then there
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must be a rainbow cycle in G with respect to the coloring. (See [1] and [2].)
On the other hand, each such G can be edge colored with exactly n−1 colors
appearing such that no cycle in G is rainbow. In conformity with [1],[3],[4],
and [5], we will call such a coloring a JL coloring of G.

There is a straightforward way to obtain JL colorings of a connected
graph G. You partition V (G) into non-empty sets A, B such that the in-
duced subgraphs G[A], G[B] are connected. (One way to do this: take a
spanning tree in G and remove one edge from it.) Color all of the edges
in the edge cut [A,B] with one color that will never be used again. Iterate
the process on G[A], G[B] and continue until all of the edges of G are colored.

The main result of [5] is that for every simple finite connected graph G,
every JL coloring is obtainable by an instance of the process just described.
It is an easy corollary of this result that if G is connected, on n vertices,
then each JL coloring of G is the restriction to E(G) of a JL coloring of the
complete graph K on V (G). To put it another way: each JL coloring of G
can be extended to a JL coloring of K. This raises the question (first raised
by a comment from Luc Teirlinck, in seminar, for which we thank him):
Which connected graphs G have the property that for every JL coloring of
Kn where n = |V (G)|, there is a subgraph G̃ of Kn isomorphic to G such that
the restriction of the coloring ofKn to the edges of G̃ gives a JL coloring of G̃?

This property is partition-wonderfulness, defined recursively and quite
differently in the next section. A weaker property, partition-goodness, arises
from contemplation of the first stage of the JL coloring construction process
described above: For which connected graphs G on n vertices can the cardi-
nalities a = |A| and b = |B| in the first stage of the process be arbitrarily
specified?

2 Preliminary Definitions

Definition 2.1. Let G be a simple graph. A partition of V (G) into subsets

A and B is good if and only if G[A] and G[B] are connected.

Definition 2.2. A graph G is partition-good if and only if for any pair

(a, b) of positive integers such that a + b = |V (G)|, there is a good partition

of V (G) into A and B such that |A| = a and |B| = b.

Note the following two special cases of partition-good graphs:
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i. K2

ii. K1 +K2

Claim: K2 and K1 +K2 are the only disconnected partition-good graphs.

Proof:
It is clear that K2 and K1 +K2 are partition-good.

Suppose that G is partition-good and disconnected. Let c = max{|V (H)| :
H is a connected component of G}.

Claim 1: G has exactly two components.

Because G is partition-good and 0 < c < |V (G)| = n, there is a partition
of V (G) into sets C and B, |C| = c and |B| = n − c, such that both G[C]
and G[B] are connected. Then each of these subgraphs must be subgraphs
of connected components of G. By the definition of c, G[C] must be one of
those connected components; then G[B] = G−G[C] is a connected compo-
nent of G. Thus G has two connected components.

Claim: |V (G)| = c+ 1

Since G has more than one component, it must be the case that |V (G)| ≥
c+1. Suppose, |V (G)| > c+1. By assumption, G is partition-good, so there
must exist A ⊆ V (G) such that a = |A| = c + 1, and G[A] is connected.
This is not possible because G has no connected subgraph of order greater
than c. Therefore, |V (G)| = c + 1. Since G only has two components, one
component must be an isolate.

Claim: c ∈ {1, 2}

Let Hs denote the component of G that is an isolate and Hc denote G’s other
component of order c. Suppose that c > 2 and consider a = 2. If G[A] is
to be connected, then both vertices must lie in Hc. Since both vertices of A
lie in Hc, G[V (G) \ A] must have one vertex in Hs and c− 2 vertices in Hc.
Thus, G[V (G) \ A] is not connected which contradicts the assumption that
G is partition-good. Therefore, either c = 2 and G = K1 +K2 or c = 1 and
G = K2.
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Definition 2.3. Let G be a simple graph. K1 is partition-wonderful. If

|V (G)| > 1, then G is partition-wonderful if and only if the following

hold:

1. G is connected.

2. For every pair (a, b) of positive integers such that a+ b = |V (G)| there
are disjoint sets A,B ⊆ V (G) such that |A| = a, |B| = b, and G[A]
and G[B] are partition-wonderful.

Lemma 2.4. Every path is partition-wonderful.

Proof:
The proof that Pn, the path on n vertices, is partition-wonderful will be by
induction on n.

P1 = K1, which is partition-wonderful by definition.

Suppose that n > 1 and a, b are positive integers such that a+ b = n. Let A
consist of a consecutive vertices along the path P = Pn starting from one end,
and let B = V (P )\A. Clearly, P [A] = Pa and P [B] = Pb. Since a, b < n, Pa

and Pb are partition-wonderful, by the induction hypothesis. Since a, b were
arbitrarily chosen, it follows that P is partition-wonderful.

3 Preliminary Results

Proposition 3.1. Let G be a simple graph. If G has a partition-wonderful

spanning subgraph, then G is partition-wonderful.

Proof:
Proof by induction on n = |V (G)|: Suppose that G has a partition-wonderful
spanning subgraph H . Then for all pairs (a, b) such that a, b are positive in-
tegers and a + b = |V (G)| = |V (H)|, there exists a partition of V (H) into
A and B such that |A| = a, |B| = b, and H [A] and H [B] are partition-
wonderful.

Then G[A], G[B] each has a partition-wonderful spanning subgraph and
is therefore partition-wonderful by the induction hypothesis. Since this holds
for all such pairs (a, b), it follows that G is partition-wonderful.

Corollary 3.2. Let G be a simple graph. If G has a Hamilton path, then G
is partition-wonderful.
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The converse of Corollary 3.2 is false. Consider the following:

G

G is clearly partition-wonderful but has no Hamilton path.

Lemma 3.3. If G is partition-wonderful, then G is partition-good.

Proof: Clear, by the definition of partition-wonderful.

4 Results for Complete Multipartite Graphs

Theorem 4.1. Let G = K1,t. G is partition-good if and only if t ∈ {1, 2}.

Proof:
If t = 1, G = K1,1 = P2 and if t = 2, G = K1,2 = P3. Since all paths are
partition-good, G is partition-good both when t = 1 and t = 2. Consider
t ≥ 3. G = K1,t, so |V (G)| = t + 1. Let v0 denote the central vertex and
vi, i ∈ {1, ..., t} be the leaves of G. Let a = |A| and b = |B| where a = 2 and
b = t− 1. Then, to be connected, G[A] must be a P2 formed by taking A to
be v0 and any single vi where i ∈ {1, ..., t}. Since B = V (G) \ A, G[B] must
be the remaining t − 1 vertices that were leaves in G forming ¯Kt−1. Thus,
G[B] is not connected and G = K1,t is not partition-good.

Corollary 4.2. Let G = K1,t. G is partition-wonderful if and only if t ∈
{1, 2}.

Theorem 4.3. Let G = Kp1,p2. G is partition-good for all 2 ≤ p1 ≤ p2.

Proof:
Let G = Kp1,p2 such that 2 ≤ p1 ≤ p2 and p1 + p2 = n. Let a, b, A, and B be
as in Definition 2.2 with a ≤ b, and let the parts of G be P1 and P2 such that
|P1| = p1 and |P2| = p2. If a = 1, let A be any vertex from P1; then G[A]
is an isolate. Then G[B] = Kp1−1,p2, and G[A], G[B] are both connected.
For a > 1, choose A,B as follows. Let A consist of a single vertex from P1

and t = a− 1 vertices from P2 and B consist of p1 − 1 vertices from P1 and
s = p2 − t vertices from P2. Then, G[A] is a K1,t and G[B] is a Kp1−1,s, both
of which are connected.
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Theorem 4.4. Let G = Kp1,p2 where 2 ≤ p1 ≤ p2. G is partition-wonderful

if and only if p2 ≤ p1 + 1.

Proof:
Let P1, P2 be the parts of G where |Pi| = pi for i ∈ {1, 2}. If p2 ≤ p1 + 1,
then p2 ∈ {p1, p1 + 1}. Then G has a Hamilton path, and, by Corollary 3.2,
is partition-wonderful.

Suppose that p2 ≥ p1+2. We will show that G is not partition-wonderful
by induction on the order of G, n = p1 + p2. Minimally, G = K2,4 as p1 ≥ 2.
We shall show that G = K2,p2 is not partition-wonderful for all p2 ≥ 4. Let
a = 2 and b = (p2 + 2) − 2 = p2, and suppose that V (G) is partitioned
into A and B such that |A| = 2, |B| = p2, and G[A], G[B] are connected.
Then A = {x, y} for some x ∈ P1, y ∈ P2, so B consists of one vertex from
P1 and p2 − 1 ≥ 3 vertices from P2. Then G[B] = K1,p2−1, which is not
partition-wonderful either by Corollary 4.2 or by Lemma 3.3. Thus, G is not
partition-wonderful.

Now suppose that 3 ≤ p1 and p1 + 2 ≤ p2, so 2 ≤ p1 − 1 ≤ (p2 − 1)− 2.
Therefore, again taking a = 2, b = p1 + p2 − 2 and A and B as usual,
G[B] = Kp1−1,p2−1 is not partition-wonderful, by the induction hypothesis.
Thus G = Kp1,p2 is not partition-wonderful, because no partition A,B of
V (G) can be found such that |A| = 2, |B| = n− 2, and both G[A] and G[B]
are partition-wonderful.

Theorem 4.5. If r > 2 and p1, ..., pr are positive integers, then G = Kp1,...,pr

is partition-good.

Proof:
Without loss of generality, p1 ≤ ... ≤ pr. Let P1, ..., Pr be the parts of
G = Kp1,...,pr so that |Pj| = pj We will proceed by induction on |V (G)| =

n =
r
∑

j=1

pj . The smallest n can be is n = 3 with r = 3 and p1 = p2 = p3 = 1.

Then, G = K3, which is clearly partition-good.
Suppose that n > 3 and that pr > 1 (as pr = 1 gives G = Kr which is
partition-good for all r). We may, also, assume that b ≥ n − b = a > 1,
since the case a = 1, b = n − 1 is easily disposed of. Let x ∈ Pr. Consider
H = G − x = Kp1,...,pr−1

. By the induction hypothesis, we can partition
V (H) = V (G) \ {x} into sets A,B′ such that |A| = a, |B′| = b − 1, and
H [A], H [B′] are connected. Take B = B′ ∪ {x}. Since H ⊆ G, G[A] = H [A]
and the only way that G[B] is not connected is if B′ ⊆ Pr \ {x}. However,
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B′ is connected, so, in that case, |B′| = 1 = b − 1. Then, a = b = 2 and
n = 4 since 1 < a ≤ b. Since r ≥ 3, G = K1,1,2 which has a Hamilton path,
and, thus, is partition-good by Corollary 3.2.

Lemma 4.6. Suppose that r > 2 and p1, ..., pr are integers satisfying 1 ≤
p1 ≤ ... ≤ pr. Then G = Kp1,...,pr has a Hamilton path if and only if

pr ≤

(

r−1
∑

j=1

pj

)

+ 1

.

Proof:
Let the parts of G be P1, ..., Pr of cardinalities p1, ..., pr, respectively. Let

n = |V (G)| =
r
∑

j=1

pj .

If G has a Hamilton path Q, then |E(Q)| = n− 1. At most two vertices
of Pr have degree 1 on Q. The others have degree 2 on Q and each edge

incident to a vertex in Pr has its other end in

r−1
⋃

j=1

Pj. Therefore,

n− 1 = |E(Q)| ≥ |{edges of Q incident to vertices in Pr}|

≥ 2 + 2(pr − 2) = 2pr − 2

Then,

2pr ≤ n+ 1 = pr +

(

r−1
∑

j=1

pj

)

+ 1

=⇒ pr ≤

(

r−1
∑

j=1

pj

)

+ 1.

Now, suppose that pr ≤

(

r−1
∑

j=1

pj

)

+ 1. If pr = 1, then G = Kr which has a

Hamilton cycle, and thus a Hamilton path. If pr ∈

{(

r−1
∑

j=1

pj

)

,

(

r−1
∑

j=1

pj

)

+ 1

}

,

then the complete bipartite graph with bipartition Pr,
r−1
⋃

j=1

Pj, which is a span-

ning subgraph of G, has a Hamilton path, and so, consequently, G has one
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as well.

Therefore, we can assume that 1 < pr <

(

r−1
∑

j=1

pj

)

. We proceed by induction

on n. The smallest value of n possible when 1 < pr <

(

r−1
∑

j=1

pj

)

is 5, and the

graph is K1,2,2, which has a Hamilton cycle. Now, suppose that n > 5. Let
x ∈ Pr and G′ = G − x. Then G′ = Kq1,...,qr with 1 ≤ q1 ≤ ... ≤ qr, where
either

1. qr = pr − 1 and qj = pj for j = 1, ..., r − 1, or

2. qr = pr−1 = pr, qj = pr − 1 for some j ∈ {1, ..., r− 1} such that pj = pr
and qi = pi for all i ∈ {1, ..., r − 1} \ {j}.

In case 1, either qr = 1, in which case G′ = Kr, or 1 < qr = pr − 1 <
(

r−1
∑

j=1

pj

)

− 1 =

(

r−1
∑

j=1

qj

)

− 1.

In either subcase, G′ has a Hamilton path Q′: in the second subcase, the
existence of Q′ is implied by the induction hypothesis.

In case 2, we have

r−1
∑

j=1

qj =

r−1
∑

j=1

pj − 1

= pr−1 +

r−2
∑

j=1

pj − 1

= pr +
r−2
∑

j=1

pj − 1 ≥ pr = qr > 1.

When pr +
r−2
∑

j=1

pj − 1 > pr, G
′ has a Hamilton path Q′ by the induction

hypothesis. In case of equality (which is possible only when r = 3, p1 = 1),
the existence of Q′ follows from previous arguments.
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If Q′ contains an edge yz with y ∈ Pi, z ∈ Pj, 1 ≤ i < j < r, then we can
obtain a Hamilton path in G by replacing yz by two edges yx and xz. If no
such edge yz exists, then every edge of Q′ has one end in Pr \ {x}. But then,

|E(Q′)| = n− 2 = pr +

r−1
∑

j=1

pj − 2

≤ 2(pr − 1)

=⇒ pr ≥
r−1
∑

j=1

pj

contrary to supposition.
Remark: The proof of Lemma 4.6 can be modified to prove the following,
a generalization of one of the main results of [6].
If r ≥ 3 and integers p1, ..., pr satisfy 1 ≤ p1 ≤ ... ≤ pr then Kp1,...,pr has a

Hamilton cycle if and only if pr ≤
r−1
∑

j=1

pj .

We strongly suspect that this is well known; what’s more, Lemma 4.6 can
be deduced easily from it.

Theorem 4.7. Let G be a complete multipartite graph with r partite sets of

sizes 1 ≤ p1 ≤ p2 ≤ ... ≤ pr−1 ≤ pr where r > 2. Then G is partition-

wonderful if and only if

pr ≤

(

r−1
∑

j=1

pj

)

+ 1.

Proof:

Suppose that pr ≤

(

r−1
∑

j=1

pj

)

+ 1; then, by Lemma 4.6, G has a Hamilton

path. Therefore, by Corollary 3.2, G is partition-wonderful.

Now, suppose that pr >

(

r−1
∑

j=1

pj

)

+ 1. Note that this implies that pr − 1 >

pr−1 + 1. We will proceed by induction on |V (G)| = n =
r
∑

j=1

pj. Minimally,

G = K1,1,4. Let a, b, A,B be as in Definition 2.3, and consider a = 2, b = 4.
It must be that G[A] = K2 where at least one endpoint lies in either P1 or
P2. Suppose that A = {x, y}, and, without loss of generality, suppose that
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x ∈ P1. Then y ∈ P2 or y ∈ P3. If y ∈ P2, then B = P3 and G[B] is
not connected. If y ∈ P3, G[B] = K1,3 which is not partition-wonderful (by
Corollary 4.2). Thus G = K1,1,4 is not partition-wonderful.

Assume that n > 6 and suppose that all complete multipartite graphs such

that r > 2 and pr >

(

r−1
∑

j=1

pj

)

+ 1 with order less than n are not partition-

wonderful. Suppose that a = 2 and b = n− 2. Then, either A = {x, y} such
that x /∈ Pr, y /∈ Pr or A = {x, y} and either x ∈ Pr or y ∈ Pr. In either
case, G[A] = K2.

Case 1: A = {x, y} such that x /∈ Pr, y /∈ Pr

G[B] = K
p
′

1
,...p

′

r−1
,p

′

r

where p
′

j = pj (for 1 ≤ j ≤ r) if x /∈ Pj and y /∈ Pj and

p
′

j = pj − 1 if x ∈ Pj or y ∈ Pj. Then,

r−1
∑

j=1

p
′

j =

(

r−1
∑

j=1

pj

)

− 2 <

(

r−1
∑

j=1

pj

)

+ 1 < pr = p
′

r.

Clearly |G[B]| < n, so by the induction hypothesis, G[B] is not partition-
wonderful.

Case 2: A = {x, y} such that x ∈ Pr or y ∈ Pr

Without loss of generality, assume that x ∈ Pr. Then G[B] = K
p
′

1
,...p

′

r−1
,p

′

r

where for 1 ≤ j ≤ r, p
′

j = pj if x, y /∈ Pj and p′j = pj − 1 if x ∈ Pj or y ∈ Pj.
Note that pr − 1 > pr−1 + 1 implies that p′r = pr − 1 is the largest of the p′j.
By assumption, |B| = b = n− 2, and

pr >

(

r−1
∑

j=1

pj

)

+ 1 =

((

r−1
∑

j=1

p′j

)

+ 1

)

+ 1

since y ∈ Pj for some 1 ≤ j ≤ r − 1. However, pr = p′r + 1, so

p′r + 1 >

((

r−1
∑

j=1

p′j

)

+ 1

)

+ 1

=⇒ p′r >

(

r−1
∑

j=1

p′j

)

+ 1.
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Then, by the induction hypothesis, G[B] is not partition-wonderful. There-
fore, when a = |A| = 2, there is no partition-wonderful G[B]. Therefore,

G = Kp1,...,pr is partition-wonderful if and only if pr ≤

(

r−1
∑

j=1

pj

)

+ 1.
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