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Abstract

In this article, we deal with the notions of weakly s(Λ, p)-open
functions and weakly s(Λ, p)-closed functions. Moreover, we establish
several characterizations of weakly s(Λ, p)-open functions and weakly
s(Λ, p)-closed functions.

1 Introduction

In 1984, Rose [11] introduced and studied the notions of weakly open func-
tions and almost open functions. Rose and Janković [10] investigated some of
the fundamental properties of weakly closed functions. In 2004, Caldas and
Navalagi [5] introduced two new classes of functions called weakly preopen
functions and weakly preclosed functions. Weak preopenness (resp. weak
preclosedness) is a generalization of weak openness (resp. weak closedness).
In 2006, Caldas et al. [4] introduced and investigated the notions of weakly
semi-θ-open functions and weakly semi-θ-closed functions. Noiri and Popa
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[9] studied a new class of functions called M-closed functions as functions de-
fined between sets satisfying some conditions. In 2008, Caldas and Navalagi
[3] presented the class of weak δ-openness (resp. weak δ-closedness) as a new
generalization of δ-openness (resp. δ-closedness) and investigated several
characterizations of weakly δ-open functions and weakly δ-closed functions.
In [1], the present authors introduced and studied the notions of weakly
p(Λ, p)-open functions and weakly p(Λ, p)-closed functions. Some character-
izations of weakly b(Λ, p)-open functions and weakly δ(Λ, p)-open functions
were investigated in [6] and [13], respectively. Furthermore, several char-
acterizations of (Λ, p)-closed functions and weakly δ(Λ, p)-closed functions
were established in [7] and [8], respectively. In this article, we introduce
the notions of weakly s(Λ, p)-open functions and weakly s(Λ, p)-closed func-
tions. In particular, we discuss some characterizations of weakly s(Λ, p)-open
functions and weakly s(Λ, p)-closed functions.

2 Preliminaries

A subset A of a topological space (X, τ) is called (Λ, p)-closed [2] if A =
T ∩ C, where T is a Λp-set and C is a preclosed set. The complement of a
(Λ, p)-closed set is called (Λ, p)-open. The family of all (Λ, p)-open sets in
a topological space (X, τ) is denoted by ΛpO(X, τ). Let A be a subset of a
topological space (X, τ). A point x ∈ X is called a (Λ, p)-cluster point [2]
of A if A ∩ U 6= ∅ for every (Λ, p)-open set U of X containing x. The set
of all (Λ, p)-cluster points of A is called the (Λ, p)-closure [2] of A and is
denoted by A(Λ,p). The union of all (Λ, p)-open sets of X contained in A is
called the (Λ, p)-interior [2] of A and is denoted by A(Λ,p). A subset A of
a topological space (X, τ) is said to be s(Λ, p)-open [2] (resp. p(Λ, p)-open,
α(Λ, p)-open [14], r(Λ, p)-open [2]) if A ⊆ [A(Λ,p)]

(Λ,p) (resp. A ⊆ [A(Λ,p)](Λ,p),
A ⊆ [[A(Λ,p)]

(Λ,p)](Λ,p), A = [A(Λ,p)](Λ,p)). The complement of a s(Λ, p)-open
(resp. p(Λ, p)-open, α(Λ, p)-open, r(Λ, p)-open) set is called s(Λ, p)-closed
(resp. p(Λ, p)-closed, α(Λ, p)-closed, r(Λ, p)-closed). The intersection of all
s(Λ, p)-closed sets of X containing A is called the s(Λ, p)-closure of A and
is denoted by As(Λ,p). The union of all s(Λ, p)-open sets of X contained in
A is called the s(Λ, p)-interior of A and is denoted by As(Λ,p). A subset
A of a topological space (X, τ) is called θ(Λ, p)-closed [2] if A = Aθ(Λ,p).
The complement of a θ(Λ, p)-closed set is said to be θ(Λ, p)-open. A point
x ∈ X is called a θ(Λ, p)-interior point [12] of A if x ∈ U ⊆ U (Λ,p) ⊆ A for
some U ∈ ΛpO(X, τ). The set of all θ(Λ, p)-interior points of A is called the
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θ(Λ, p)-interior [12] of A and is denoted by Aθ(Λ,p).

Lemma 2.1. [12] For subsets A and B of a topological space (X, τ), the
following properties hold:

(1) X − Aθ(Λ,p) = [X − A]θ(Λ,p) and X −Aθ(Λ,p) = [X −A]θ(Λ,p).

(2) A is θ(Λ, p)-open if and only if A = Aθ(Λ,p).

(3) A ⊆ A(Λ,p) ⊆ Aθ(Λ,p) and Aθ(Λ,p) ⊆ A(Λ,p) ⊆ A.

(4) If A ⊆ B, then Aθ(Λ,p) ⊆ Bθ(Λ,p) and Aθ(Λ,p) ⊆ Bθ(Λ,p).

(5) If A is (Λ, p)-open, then A(Λ,p) = Aθ(Λ,p).

3 Characterizations of weakly s(Λ, p)-open func-

tions

In this section, we introduce the notion of weakly s(Λ, p)-open functions.
Moreover, some characterizations of weakly s(Λ, p)-open functions are dis-
cussed.

Definition 3.1. A function f : (X, τ) → (Y, σ) is said to be weakly s(Λ, p)-
open if f(U) ⊆ [f(U (Λ,p))]s(Λ,p) for each (Λ, p)-open set U of X.

Theorem 3.2. For a function f : (X, τ) → (Y, σ), the following properties
are equivalent:

(1) f is weakly s(Λ, p)-open;

(2) f(Aθ(Λ,p)) ⊆ [f(A)]s(Λ,p) for every subset A of X;

(3) [f−1(B)]θ(Λ,p) ⊆ f−1(Bs(Λ,p)) for every subset B of Y ;

(4) f−1(Bs(Λ,p)) ⊆ [f−1(B)]θ(Λ,p) for every subset B of Y .

Proof. The proof follows from Theorem 3.2 of [6].

Theorem 3.3. Let f : (X, τ) → (Y, σ) be a bijective function. Then the
following properties are equivalent:

(1) f is weakly s(Λ, p)-open;

(2) [f(U)]s(Λ,p) ⊆ f(U (Λ,p)) for every (Λ, p)-open set U of X;
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(3) [f(K(Λ,p))]
s(Λ,p) ⊆ f(K) for every (Λ, p)-closed set K of X.

Proof. The proof follows from Theorem 3.2 of [1].

Theorem 3.4. For a function f : (X, τ) → (Y, σ), the following properties
are equivalent:

(1) f is weakly s(Λ, p)-open;

(2) for each x ∈ X and each (Λ, p)-open set U of X containing x, there ex-
ists a s(Λ, p)-open set V of Y containing f(x) such that V ⊆ f(U (Λ,p)).

Proof. (1) ⇒ (2): Let x ∈ X and U be any (Λ, p)-open set of X containing
x. Since f is weakly s(Λ, p)-open, f(x) ∈ f(U) ⊆ [f(U (Λ,p))]s(Λ,p). Put
V = [f(U (Λ,p))]s(Λ,p), then V is a s(Λ, p)-open set of Y containing f(x) such
that V ⊆ f(U (Λ,p)).

(2) ⇒ (1): Let U be any (Λ, p)-open set of X and y ∈ f(U). It follows
from (2) that V ⊆ f(U (Λ,p)) for some s(Λ, p)-open set V of Y containing y.
Thus y ∈ V ⊆ [f(U (Λ,p))]s(Λ,p) and hence f(U) ⊆ [f(U (Λ,p))]s(Λ,p). This shows
that f is weakly s(Λ, p)-open.

The proof of the following theorem is straightforward and thus is omitted.

Theorem 3.5. For a function f : (X, τ) → (Y, σ), the following properties
are equivalent:

(1) f is weakly s(Λ, p)-open;

(2) f(K(Λ,p)) ⊆ [f(K)]s(Λ,p) for every (Λ, p)-closed set K of X;

(3) f([U (Λ,p)](Λ,p)) ⊆ [f(U (Λ,p))]s(Λ,p) for every (Λ, p)-open set U of X;

(4) f(U) ⊆ [f(U (Λ,p))]s(Λ,p) for every p(Λ, p)-open set U of X;

(5) f(U) ⊆ [f(U (Λ,p))]s(Λ,p) for every α(Λ, p)-open set U of X.

4 Characterizations of weakly s(Λ, p)-closed func-

tions

We begin this section by introducing the notion of weakly s(Λ, p)-closed
functions.



Characterizations of weakly s(Λ, p)-open functions... 813

Definition 4.1. A function f : (X, τ) → (Y, σ) is said to be weakly s(Λ, p)-
closed if [f(K(Λ,p))]

s(Λ,p) ⊆ f(K) for each (Λ, p)-closed set K of X.

Theorem 4.2. For a function f : (X, τ) → (Y, σ), the following properties
are equivalent:

(1) f is weakly s(Λ, p)-closed;

(2) [f(U)]s(Λ,p) ⊆ f(U (Λ,p)) for every (Λ, p)-open set U of X.

Proof. The proof follows from Theorem 4.1 of [1].

Theorem 4.3. For a function f : (X, τ) → (Y, σ), the following properties
are equivalent:

(1) f is weakly s(Λ, p)-closed;

(2) [f(U)]s(Λ,p) ⊆ f(U (Λ,p)) every (Λ, p)-open set U of X;

(3) [f(K(Λ,p))]
s(Λ,p) ⊆ f([K(Λ,p)]

(Λ,p)) every (Λ, p)-closed set K of X;

(4) [f(K(Λ,p))]
s(Λ,p) ⊆ f([K(Λ,p)]

(Λ,p)) every r(Λ, p)-closed set K of X;

(5) [f(K(Λ,p))]
s(Λ,p) ⊆ f(K) every p(Λ, p)-closed set K of X;

(6) [f(K(Λ,p))]
s(Λ,p) ⊆ f(K) every α(Λ, p)-closed set K of X.

Proof. (1) ⇒ (2): The proof follows from Theorem 4.2.
(2) ⇒ (3): Let K be any (Λ, p)-closed set of X . Then K(Λ,p) is (Λ, p)-open

in X and by (2), [f(K(Λ,p))]
s(Λ,p) ⊆ f([K(Λ,p)]

(Λ,p)).
(3) ⇒ (4): This is obvious since every r(Λ, p)-closed set is (Λ, p)-closed.

(4) ⇒ (5): LetK be any p(Λ, p)-closed set ofX . Then we have [K(Λ,p)]
(Λ,p) ⊆

K. Since [K(Λ,p)]
(Λ,p) is r(Λ, p)-closed, by (4), [f(K(Λ,p))]

s(Λ,p) ⊆ [f([[K(Λ,p)]
(Λ,p)](Λ,p))]

s(Λ,p) ⊆
f([[[K(Λ,p)]

(Λ,p)](Λ,p)]
(Λ,p)) = f([K(Λ,p)]

(Λ,p)).
(5) ⇒ (6): This is obvious since every α(Λ, p)-closed set is p(Λ, p)-closed.

(6) ⇒ (1): Let K be any (Λ, p)-closed set of X . Then K is α(Λ, p)-closed
in X . Using (6), we have [f(K(Λ,p))]

s(Λ,p) ⊆ f(K). This shows that f is
weakly s(Λ, p)-closed.
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