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Abstract

Over the past decades, there has been a lot of studies on graphs

associated to groups which are significant in providing effective formu-

lation on the characteristics of the algebraic structures of the groups

and graphs. The union power Cayley graph of groups combines the

notions of two graphs namely the power graph and Cayley graph. The

union power Cayley graph of a group G with respect to the inverse-

closed subset S of G, is a graph whose vertices are the elements of G

and two vertices, x and y are adjacent if xy−1 ∈ S or if one of them

can be written as an integral power of the other. In this manuscript,

we present the union power Cayley graphs of the cyclic groups with

respect to subsets of size two. Moreover, we classify the union power
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Cayley graphs of cyclic groups as connected, complete, regular and

planar. Furthermore, we determine some of the invariants of the union

power Cayley graphs of cyclic groups including the clique numbers,

vertex chromatic numbers, girths, and diameters.

1 Introduction

In recent times, various approaches have been employed to examine different
aspects of a group, including introduction to graphs associated with diverse
algebraic structures. In this context, the utilization of the concepts of the
groups and their geometric properties to define graphs has emerged as a
highly versatile technique in bridging the gap between graph theory and
group theory, thereby uncovering the characteristics of graphs related to dis-
tinct groups.

In abstract algebra, the integration of group theory into graph theory
originated back in the early 18th century when the Cayley graph was being
explored. The Cayley graph was first introduced by Cayley [1] in 1988. A
Cayley graph of a group G relative to the inverse-closed subset S of G is
defined as a graph that has the elements of G as its vertices. Two vertices
x and y are adjacent if there exists s ∈ S such that x = ys or y = xs.
Several decades later, researchers delved deeper into the concept, employ-
ing a variety of group types in their exploration. Wilson [2] claimed that
a circulant graph of Cay (Zn, S), where Zn is the integral cyclic group of
order n with certain conditions is unstable. Vilfred [3] asserted that a non-
connected circulant graph of Cay (Zn, S) consists of gcd(S, n) copies of the
graph Cay (Zn/ gcd(S, n), S/ gcd(S, n)). Moreover, Vilfred [4] defined a cir-
culant graph as a Cayley graph or digraph of a cyclic group. In 2013, Marklof
[5] studied Cayley graphs of cyclic groups, also known as circulant graphs or
multi-loop networks. Moreover, as asserted in [5], the diameter of a random
circulant 2k-regular graph with n vertices scales as n1/k.

Various graphs associated with algebraic structures can be employed to
identify their unique characteristics. In this context, power graphs have been
thoroughly investigated in recent decades. The exploration of directed power
graphs was initiated in 2000 by Kelarev and Quinn [6], where they derived
certain combinatorial characteristics of the directed power graph for finite
groups. Motivated by this, Chakrabarty et al. [7] introduced the undirected
power graph P (G) of a group G. Moreover, in [7], it was apparent that P (G)
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with any finite group G is a connected graph because the identity element
of G is adjacent to all other vertices of P (G). More generally, Cameron
[8] established that if the power graphs of two finite groups are isomorphic,
then their directed power graphs are also isomorphic and showed that the
identity and the generators of G make up the set of vertices H of P (G) that
are adjacent to every other vertex of P (G) for a finite cyclic group G with
non-prime-power order n such that |H| = 1+ϕ(n), where ϕ(n) is the Euler’s
function. Mehanian et al. [10] obtained a formula for the power graph of
cyclic groups of prime composite power order. In addition, Chelvam and
Sattanathan [9] obtained some fundamental characterizations of the power
graph for a finite cyclic group. The power graph of a finite group was shown
to be perfect, asserted by Alireza et al. in [11]. Finally, the explicit formula
for the clique number of the power graph of a finite cyclic group was given
in [11].

This study is an extension to the concepts of graphs associated with
groups. By combining the concept of Cayley graph with power graph, the
union power Cayley graph of finite group G related to the subset S of G,
Pow − Cay+(G, S), has been introduced in [12]. In this study, we find a
generalization of this graph for the cyclic groups with order n = pα1

1 pα2

2 . . . pαr
r ,

denoted by Cn, where pi are prime numbers such that p1 < p2 < p3 <
· · · < pr and αi ∈ N. The main focus is to construct Pow − Cay+(G, S)
with respect to a subset of Cn = 〈a〉 of size two, S(2) = {ai, (ai)−1} ; i ∈
U(n), where U(n) = {i : i ∈ N, 1 < i < n and gcd(i, n) = 1}. Various
structures of the groups can be discerned by examining this graph along with
their characteristics on finite cyclic groups. Hence the general structures for
Pow − Cay+(G, S) for the cyclic groups with order n = pα1

1 pα2

2 . . . pαr
r with

some graph-theoretic properties for the graph which include clique numbers,
vertex chromatic numbers, girth, and diameters are determined in this study.
Moreover, the connectivity, regularity, completeness and planarity of this
graph are also analyzed and discussed.

2 Preliminaries

Some basic definitions, notations, and preliminaries are included in this sec-
tion. In this manuscript, the standard notations used are derived from [13]
for groups and [14] for graphs. Besides, all groups considered are finite and
the study is limited to cyclic groups Cn of order n = pα1

1 pα2

2 . . . pαr
r , where

pi are prime numbers such that p1 < p2 < p3 < · · · < pr, and αi ∈ N with
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respect to a subset of Cn of size two, S(2) = {ai, (ai)−1} ; i ∈ U(n), where
U(n) = {i : i ∈ N, 1 < i < n and gcd(i, n) = 1}.

We consider the undirected simple graph Γ = (V (Γ), E(Γ)) without loops
or multiple edges, where the set of vertices is denoted by V (Γ) and the
set of edges is denoted by E(Γ). Throughout this paper, we represent the
adjacency between vertices ai and aj as ai ∼ aj ; otherwise, ai ≁ aj, the
number of vertices in the graph Γ as |V (Γ)| and the degree of the vertex v
as deg(v). A graph Γ is considered a connected graph if there exists a path
between every pair of vertices vi and vj in V (Γ). Otherwise, Γ is called a
disconnected graph. A simple graph Γ comprising n vertices is classified as
a complete graph of order n, denoted by Kn if every vertex in Γ is connected
to all the other vertices. A graph, denoted as Γ, is said to be regular if all
its vertices have similar degrees. For a regular graph if the common degree
is n, then it is said to be an n-regular graph. A graph Γ is considered to
be planar if it can be embedded in a plane in such a way that its edges
intersect exclusively at their endpoints. The vertex chromatic number of Γ,
represented as χ(Γ), refers to the minimum number of colors needed to color
the vertices of Γ such that no two adjacent vertices have the same color. A
clique is characterized as a subset X of the set of vertices in the graph Γ,
where the subgraph formed by X represents a complete graph. The clique
number of a graph Γ, denoted as ω(Γ), is defined as the maximum size of a
clique in Γ. In addition, the diameter of a graph Γ, represented as diam(Γ), is
the maximum distance between any pair of vertices in Γ. The girth in a graph
Γ, denoted by girth(Γ), is defined as the size of the shortest cycle in Γ. In this
manuscript, the disjoint union of two graphs Γ1 = (V1, E1) and Γ2 = (V2, E2),
is denoted as Γ1 ∪ Γ2. In this case, the vertex set is V (Γ1 ∪ Γ2) = V1 ∪ V2,
and the edge set is E(Γ1 ∪ Γ2) = E1 ∪ E2. Additionally, the joint of Γ1 =
(V1, E1) and Γ2 = (V2, E2) is denoted as Γ1+Γ2. This graph has a vertex set
V (Γ1 +Γ2) = V1 ∪ V2 and an edge set E(Γ1 +Γ2) = E1 ∪E2 including edges
connecting all vertices in V1 to vertices in V2. Throughout this manuscript,
the cyclic group of order n is represented by Cn. Meanwhile, C̃n denotes the
cycle graph, and ϕ(n) = |U(n)| = |{i : i ∈ N, 1 < i < n and gcd(i, n) = 1}|
is the Euler’s function for n ∈ N.

First, the formal definition of cyclic group and the union power Cayley
graph are provided as follows:

Definition 2.1. [13] Cyclic Group

A group G is called a cyclic group if there is an element a ∈ G that generates
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it. More specifically, G = 〈a〉 = {an : n ∈ N} a cyclic group of order n is

denoted as Cn.

Definition 2.2. [12] Union Power Cayley Graph

Let G be a group and S be a subset of G such that the identity e of G is not

in S, S \{e}, and S−1 ⊆ S. Then the union power Cayley graph of G related

to S, denoted by Pow − Cay+(G, S), is an undirected simple graph with the

vertex set equal to G and two vertices x and y are adjacent if and only if at

least one of the following two conditions are satisfied:

1. xy−1 ∈ S.

2. x = yn or y = xm for some m,n ∈ N.

In other words, E(Pow − Cay+(G, S)) = {{x, y} : {x, y} ∈ E(P (G)) ∪
E(Cay(G, S))}.

Next, some theorems related to the union power Cayley graph of finite
groups are given.

Theorem 2.3. [10] Let Zn be a cyclic group of order n = pα1

1 pα2

2 . . . pαr
r ,

where pi are prime numbers such that p1 < p2 < p3 < · · · < pr and αi ∈
N. Then the power graph, P (Zn) with V (P (Zn)) = {1, 2, . . . , n}, P (Zn) =
Kϕ(n)+1+∆n

[
Kϕ(d1), Kϕ(d2), . . . , Kϕ(dm)

]
, where ∆n is a graph with vertex and

edge sets V (∆n) = {di : di|n, and di 6= 1, di 6= n, 1 ≤ i ≤ m} and E (∆n) =
{{di, dj} : di|dj, 1 ≤ i < j ≤ m}, respectively.

Theorem 2.4. [15] Every Cayley graph Cay (G, S) is |S|- regular.

Theorem 2.5. [3] Let ak ∈ S. Then in C̃n(S), the length of a cycle of

period k is n
gcd(n,k)

and the number of disjoint periodic cycles of period k is

gcd (n, k).

Proposition 2.6. [3] Let Cay(Zn, S), where S = {r1, r2, ..., rk}, and Cay(Zn, S) ∼=

C̃n ({r1, r2, ..., rk}). Then C̃n ({r1, r2, ..., rk}) is connected if and only if gcd(n, ri) =
1, for 1 ≤ ri ≤ k.

Theorem 2.7. [11] Let n = pα1

1 pα2

2 . . . pαm
m with p1 < p2 < · · · < pm and

αi ∈ N. Then ω (P (Cn)) = ϕ(n)+ϕ
(

n
p1

)
+ · · ·+ϕ

(
n

p
α1

1

)
+ϕ

(
n

p
α1

1
p2

)
+ · · ·+

ϕ
(

n
p
α1

1
p
α2

2

)
+ · · ·+ϕ

(
n

p
α1

1
p
α2

2
···pm

)
+ · · ·+ϕ

(
n

p
α1

1
p
α2

2
···pαm−1

m

)
+ϕ

(
n

p
α1

1
p
α2

2
···pαm

m

)
,

where ϕ is the Euler’s function.

Theorem 2.8. [16] Two graphs generated by two cyclic groups are isomor-

phic if and only if the cyclic groups are isomorphic.
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3 Results

In this section, we begin by presenting the union power Cayley graph on
cyclic groups Cn, of order n, where n = pα1

1 pα2

2 . . . pαr
r , and pi are prime

numbers such that p1 < p2 < p3 < · · · < pr and αi ∈ N with respect to a
subset of Cn of size two, S(2) = {ai, (ai)−1} ; i ∈ U(n). Next, we provide some
propositions related to the graph using the general presentations of the graph.
In addition, we use the general presentations to classify the graphs based on
the connectivity, completeness, regularity, and planarity of the graphs. The
general presentation of this graph is given in the following subsection.

3.1 General Presentations of the Union Power Cayley
Graph on Cyclic Groups

In the following theorem, we present the union power Cayley graph for a
cyclic group Cn of order n, where n = pα1

1 pα2

2 . . . pαr
r , and αi ∈ N, with

respect to the subsets of size two.

Theorem 3.1. Let Cn = 〈a〉 be a cyclic group of order n generated by a,
where n = pα1

1 pα2

2 . . . pαr
r , and pi are prime numbers such that p1 < p2 < p3 <

· · · < pr, and αi ∈ N. Then the union power Cayley graph of Cn with respect
to a subset of Cn of size two, S(2) = {ai, (ai)−1} ; i ∈ U(n), is

Pow − Cay+
(
Cn, S

(2)
)
∼= Kϕ(n)+1 +∇n

[
Kϕ(d1), Kϕ(d2), . . . , Kϕ(dm)

]
,

where ∇n is a graph with vertex and edge sets
V (∇n) = {di : di|n, and di 6= 1, di 6= n, 1 ≤ i ≤ m}
and
E (∇n) = {{di, dj} : di|dj

∨
di = aidj; 1 ≤ i < j ≤ m and ai ∈ S(2)},

respectively.

Proof. Suppose Cn = 〈a〉 is a cyclic group of order n, where n = pα1

1 pα2

2 . . . pαr
r .

By Definition 2.2, E(Pow−Cay+(Cn, S
(2))) = {{ai, aj} : {ai, aj} ∈ E(P (Cn))∪

E(Cay(Cn, S
(2)))}. This means that there is a need to consider edges of

P (Cn) and the edges of Cay(Cn, S
(2)) and find their union. First, by Theo-

rem 2.8, since Zn
∼= Cn, P (Cn) ∼= P (Zn). Therefore, the general presentation

for power graph of Cn given in Theorem 2.3 shows that the power graph
P (Cn) has many complete subgraphs isomorphic to
Kϕ(n)+1 + ∆n

[
Kϕ(d1), Kϕ(d2), . . . , Kϕ(dm)

]
, where ∆n is a graph with vertex

and edge sets
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V (∆n) = {di : di|n, and di 6= 1, di 6= n, 1 ≤ i ≤ m}
and
E (∆n) = {{di, dj} : di|dj, 1 ≤ i < j ≤ m},
such that all elements belong to U(n) with an identity element are adjacent
to every vertex in the graph and constitute a complete subgraph of order
ϕ(n) + 1.
Besides, all vertices of degrees di and dj are adjacent for some i and j, which
belong to {Kϕ(d1), Kϕ(d2), . . . , Kϕ(dm)}, where {d1, . . . , dm} = D(n) − {1, n},
where D(n) is the set of all divisors of n and constitute complete subgroups
of orders ϕ (di) , 1 ≤ i ≤ m. Since Cn is a cyclic group, |di|||dj|. Also,
from Theorem 2.4, Cay (G, S) is |S|-regular. Hence Cay

(
Cn, S

(2)
)
is a 2-

regular graph since |S(2)| = 2. Moreover, there is an edge joining the ver-
tex ai and aj in Cn if and only if ai(aj)−1 = g for g ∈ S(2). For a set
S(2) = {ai, (ai)−1} , i ∈ U(n), the gcd (n, i) = 1. By Theorems 2.8 and 2.5
and Proposition 2.6, the Cayley graph with respect to S(2), a subset of Cn

of size two, is a connected circulant graph and consists of gcd (n, i) copies
of the graph. In other words, there is one connected circulant graph. Since
|Cn| = n and gcd (n, i) = 1, Cay(Cn, S

(2)) is isomorphic to a cycle graph of

order n, C̃n. Secondly, there is a need to check for the common edges as a
result of taking the union of the edges of Cay(Cn, S

(2)) with P (Cn), if the
all edges belong to Cay(Cn, S

(2)) in P (Cn) or if there are some additional
new edges. To determine this, recall that gi ∼ gj if gi = aigj; ai ∈ S(2).
Thus Cay(Cn, S

(2)) = C̃n which means that gi ∼ gi+j, where j ∈ U(n).
Hence di = aidj are the new edges formed by the impact of taking union
of edges with the Cayley graph. These edges linked some vertices of Kϕ(di)

and Kϕ(dj) for i 6= j besides edges of power graph which make the edges

E (∆n) = {{didj} : di|dj
∨
di = aidj; 1 ≤ i < j ≤ m; ai ∈ S(2)}. It remains

to show that these new edges do not from new cliques. This can be observed
easily, since gi ∼ gi+j, for all gi ∈ Cn and j ∈ S(2), when j /∈ U(Cn) and
j 6= e. Hence these new edges link some vertices of Kϕ(di) with some vertices
of Kϕ(dj) for i 6= j which means that they are not linked to all the vertices
of the subgraphs. Hence they did not make new cliques but only create
some new edges. Therefore, these new edges do not form a new clique in
Pow − Cay+

(
Cn, S(2)

)
.

Hence Pow − Cay+
(
Cn, S

(2)
)
∼= Kϕ(n)+1 + ∇n

[
Kϕ(d1), Kϕ(d2), . . . , Kϕ(dm)

]
,

where ∇n is a graph with vertex and edge sets
V (∇n) = {di : di|n, and di 6= 1, di 6= n, 1 ≤ i ≤ m}
and
E (∇n) = {{di, dj} : di|dj

∨
di = aidj; 1 ≤ i < j ≤ m and ai ∈ S(2)}.
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In the next subsection, we present the invariants of the union power
Cayley graphs for a cyclic group of order n, Cn, where n = pα1

1 pα2

2 . . . pαr
r

with respect to the subset of size two. These invariants comprise the clique
number, chromatic numbers, diameter, and girth of the graph.

3.2 Invariants of the Union Power Cayley Graphs As-
sociated to Cyclic Group of Order n with Subsets

of Size Two

In this subsection, some of the invariants of the union power Cayley graphs
for a cyclic group of order, n, with respect to the subsets of size two are
investigated, comprising the clique number, chromatic numbers, diameter,
and girth of the graph.

In the following proposition, we find the clique number of the union power
Cayley graphs for a cyclic group of order, n, with respect to the subsets of
size two.

Proposition 3.2. Let Cn = 〈a〉 be a cyclic group of order n generated by a,
where n = pα1

1 pα2

2 . . . pαr
r , and pi are prime numbers such that p1 < p2 < p3 <

· · · < pr, and αi ∈ N. Then the clique number of the union power Cayley
graphs of Cn with respect to a subset of Cn of size two, S(2) = {ai, (ai)−1} ; i ∈
U(n), is

ω
(
Pow − Cay+

(
Cn, S

(2)
))

= ϕ(n)+ϕ
(

n
p1

)
+· · ·+ϕ

(
n

p
α1

1

)
+ϕ

(
n

p
α1

1
p2

)
+· · ·+

ϕ
(

n
p
α1

1
p
α2

2

)
+ · · ·+ϕ

(
n

p
α1

1
p
α2

2
···pm

)
+ · · ·+ϕ

(
n

p
α1

1
p
α2

2
···pαm−1

m

)
+ϕ

(
n

p
α1

1
p
α2

2
···pαm

m

)
,

where ϕ is the Euler’s function.

Proof. Let Cn be a cyclic group of order n = pα1

1 pα2

2 . . . pαm
m . By Theorem

3.1, Pow−Cay+
(
Cn, S

(2)
)
∼= Kϕ(n)+1 +∇n

[
Kϕ(d1), Kϕ(d2), . . . , Kϕ(dm)

]
. Let

n = pα1

1 pα2

2 . . . pαm
m be a natural number andm = α1+α1+...+αm. Also, let p

be the set of all m-tuples (d1, d2, ..., dm) where d1 > d2 > ... > dm is the chain
of divisors of n and (di − 1)/di be a prime for all i = 1, 2, 3, ..., m. Let X be
one of the cliques of Pow−Cay+

(
Cn, S

(2)
)
. It can easily be observed that if

x ∈ V (X), then r ∈ V (X) when gcd(r, |x|) = 1. Thus the elements V (X) can
be partitioned into sets which contains elements of the same order. That is,
V (X) can be written as disjoint union of cliques V (X) = Xh1

∪Xh2
∪...∪Xhk

,
where hi posses all of the elements of order hk and |Xhi

| = ϕ(hi). This
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means that a function f can be defined as f : P → N by f(d1, d2, ..., dm) =
ϕ(d1)+ϕ(d2)+...+ϕ(dm). Recall that, E (∇n) = {didj : di|dj

∨
di = aidj; 1 ≤

i < j ≤ m and i ∈ U(n)} which shows that there are some new edges
formed from the Cayley graph as a result of taking edge union. However,
since the edges linked only some vertices of Kϕ(di), for i 6= j, the new edges
do not produce new cliques. Hence the new edges do not change the size
of the maximum clique of the graph. Thus ω

(
Pow − Cay+

(
Cn, S

(2)
))

=
ω(P (Cn)). To see this, since x ∼ y if 〈x〉 ⊆ 〈y〉 or 〈y〉 ⊆ 〈x〉, d1, d2, ..., dk
is a chain of positive divisors of n such that f1|f2|f3| · · · |fk. Then a clique
of size

∑k
i=0 ϕ (fi) in Pow − Cay+

(
Cn, S

(2)
)
can be found. Suppose that

V (Y ) = Yd0 ∪ Yd1 ∪ ... ∪ Ydm, where d0 = n and Ydi posses all elements of
order di, |Ydi| = ϕ(di). Since Y is a maximal clique, |V (Y )| =

∑n
i=0 ϕ (di) =

ω(P (Cn)). From the above step and Theorem 2.7 , ω (P (Cn)) = ϕ(n) +

ϕ
(

n
p1

)
+ · · ·+ϕ

(
n

p
α1

1

)
+ϕ

(
n

p
α1

1
p2

)
+ · · ·+ϕ

(
n

p
α1

1
p
α2

2

)
+ · · ·+ϕ

(
n

p
α1

1
p
α2

2
···pm

)
+

· · ·+ϕ
(

n

p
α1

1
p
α2

2
···pαm−1

m

)
+ϕ

(
n

p
α1

1
p
α2

2
···pαm

m

)
. Since ω

(
Pow − Cay+

(
Cn, S

(2)
))

=

ω(P (Cn)), ω
(
Pow − Cay+

(
Cn, S

(2)
))

= ϕ(n) + ϕ
(

n
p1

)
+ · · · + ϕ

(
n

p
α1

1

)
+

ϕ
(

n
p
α1

1
p2

)
+ · · ·+ϕ

(
n

p
α1

1
p
α2

2

)
+ · · ·+ϕ

(
n

p
α1

1
p
α2

2
···pm

)
+ · · ·+ϕ

(
n

p
α1

1
p
α2

2
···pαm−1

m

)
+

ϕ
(

n
p
α1

1
p
α2

2
···pαm

m

)
.

Proposition 3.3. Let Cn = 〈a〉 be a cyclic group of order n generated by
a, where n = pα1

1 pα2

2 . . . pαr
r , and let pi be prime numbers such that p1 <

p2 < p3 < · · · < pr, and αi ∈ N. Then the chromatic number of the
union power Cayley graph of Cn with respect to a subset of Cn of size two,
S(2) = {ai, (ai)−1} ; i ∈ U(n), is

χ
(
Pow − Cay+

(
Cn, S

(2)
))

= ϕ(n)+ϕ
(

n
p1

)
+· · ·+ϕ

(
n

p
α1

1

)
+ϕ

(
n

p
α1

1
p2

)
+· · ·+

ϕ
(

n
p
α1

1
p
α2

2

)
+ · · ·+ϕ

(
n

p
α1

1
p
α2

2
···pm

)
+ · · ·+ϕ

(
n

p
α1

1
p
α2

2
···pαm−1

m

)
+ϕ

(
n

p
α1

1
p
α2

2
···pαm

m

)
,

where ϕ is the Euler’s function.

Proof. Suppose Cn is a cyclic group of order n = pα1

1 pα2

2 . . . pαm
m . By Theo-

rem 3.1, Pow−Cay+
(
Cn, S

(2)
)
∼= Kϕ(n)+1 +∇n

[
Kϕ(d1), Kϕ(d2), . . . , Kϕ(dm)

]
.

Even though ∇n creates some new vertices that link some of the vertices
of Kϕ(di) and Kϕ(dj) for i 6= j, some vertices of Kϕ(di) are not joined with
some vertices of Kϕ(dj). Let u ∈ V (Kϕ(di)) and v ∈ V (Kϕ(dj)) such that
u ≁ v. Then u and v can be assigned with a single color. This means that
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some colors can be shared among some vertices. Thus the colors of non-
adjacent vertices V (Kϕ(di)) and V (Kϕ(dj)) for i 6= j can be shared from the
vertices of one clique to the vertices of another distinct clique. By consid-
ering the above fact and the fact that each vertex of the maximum clique
must be colored distinctly, the minimum number of colors required to prop-
erly color the vertices of the graph is its clique number. By Proposition 3.2,

χ
(
Pow − Cay+

(
Cn, S

(2)
))

= ϕ(n)+ϕ
(

n
p1

)
+· · ·+ϕ

(
n

p
α1

1

)
+ϕ

(
n

p
α1

1
p2

)
+· · ·+

ϕ
(

n
p
α1

1
p
α2

2

)
+· · ·+ϕ

(
n

p
α1

1
p
α2

2
···pm

)
+· · ·+ϕ

(
n

p
α1

1
p
α2

2
···pαm−1

m

)
+ϕ

(
n

p
α1

1
p
α2

2
···pαm

m

)
.

Proposition 3.4. Let Cn = 〈a〉 be a cyclic group of order n generated by
a, where n = pα1

1 pα2

2 . . . pαr
r , and let pi be prime numbers such that p1 < p2 <

p3 < · · · < pr, and αi ∈ N. Then the diameter of the union power Cayley
graph of Cn with respect to a subset of Cn of size two, S(2) = {ai, (ai)−1} ; i ∈
U(n), is

diam
(
Pow − Cay+

(
Cn, S

(2)
))

= 2.

Proof. Let Cn be a cyclic group of order n = pα1

1 pα2

2 . . . pαm
m , Cn. By Theo-

rem 3.1, Pow − Cay+
(
Cn, S

(2)
)
∼= Kϕ(n)+1 +∇n

[
Kϕ(d1)Kϕ(d2), . . . , Kϕ(dm)

]
.

The general presentation of the graph shows that V (Kϕ(n+1)) are adjacent
to all the vertices of the graph, but not all the vertices of Kϕ(di) are adja-
cent to all the vertices of Kϕ(dj) for i 6= j. Let u ∈ V (Kϕ(n+1)) and pick
arbitrary vertices v1 ∈ V (Kϕ(di)) and v2 ∈ V (Kϕ(dj)) such that v1 ≁ v2.
Then v2 can be reachable by v1 through u, which is a walk of length 2 as
the maximum distance to reach any pair of vertices of the graph. Hence
diam

(
Pow − Cay+

(
Cn, S

(2)
))

= 2.

Proposition 3.5. Let Cn = 〈a〉 be a cyclic group of order n generated by
a, where n = pα1

1 pα2

2 . . . pαr
r , and pi are prime numbers such that p1 < p2 <

p3 < · · · < pr, and αi ∈ N. Then the girth of the union power Cayley graph
of Cn with respect to a subset of Cn of size two, S(2) = {ai, (ai)−1} ; i ∈ U(n)
is,

girth
(
Pow − Cay+

(
Cn, S

(2)
))

= 3.

Proof. Let Cn be a cyclic group of order n = pα1

1 pα2

2 . . . pαm
m . Then by Theo-

rem 3.1, Pow − Cay+
(
Cn, S

(2)
)
∼= Kϕ(n)+1 +∇n

[
Kϕ(d1)Kϕ(d2), . . . , Kϕ(dm)

]
.

Suppose n is the product of the two smallest prime, n ≥ 6. Thus |V (Kϕ(n+1))|
≥ 3 which shows that, for all n, the graph Pow − Cay+

(
Cn, S

(2)
)
contains
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a minimum cycle of length 3. Therefore, girth
(
Pow − Cay+

(
Cn, S

(2)
))

=
3.

The general presentation of the union power Cayley graphs for a cyclic
group of order n, Cn, where n = pα1

1 pα2

2 . . . pαr
r with respect to the subsets of

size two in Subsection 3.1, and the invariants in Subsection 3.2 are used to
classify the graph as one of connected, complete, regular, or planar, which
are presented in the following Subsection.

3.3 Classification of the Union Power Cayley Graphs

Associated to Cyclic Group of Order n With Re-
spect to the Subsets of Size Two

In the next proposition, we give the connectivity, regularity, completeness,
and planarity of the union power Cayley graphs for a cyclic group of order
n, Cn, where n = pα1

1 pα2

2 . . . pαr
r with respect to the subsets of size two.

Proposition 3.6. Let Cn = 〈a〉 be a cyclic group of order n generated
by a, where n = pα1

1 pα2

2 . . . pαr
r . Suppose pi are prime numbers such that

p1 < p2 < p3 < · · · < pr and αi ∈ N. Then the union power Cayley graph of
Cn with respect to a subset of Cn of size two, S(2) = {ai, (ai)−1} ; i ∈ U(n) is
connected and not regular, hence not complete.

Proof. Let Cn be a cyclic group of order n = pα1

1 pα2

2 . . . pαm
m . By Theorem

3.1, Pow − Cay+
(
Cn, S

(2)
)
∼= Kϕ(n)+1 +∇n

[
Kϕ(d1), Kϕ(d2), . . . , Kϕ(dm)

]
. By

the graph presentation, Kϕ(n)+1 is a joint with
[
Kϕ(d1), Kϕ(d2), . . . , Kϕ(dm)

]
.

This means that all the vertices of the graph can be reachable from one an-
other through V (Kϕ(n)+1). Therefore, Pow − Cay+

(
Cn, S

(2)
)
is connected.

For regularity, since di|n, ϕ(di)|ϕ(n) which implies that deg(Kϕ(n)+1) >
deg(Kϕ(di)). Therefore, the degree of some vertices of the graph differs.
Hence Pow − Cay+

(
Cn, S

(2)
)
is not regular. For completeness, since not

all vertices of Kϕ(di) are adjacent with all the vertices of Kϕ(dj) for i 6= j,

Pow − Cay+
(
Cn, S

(2)
)
is not complete.

In the next proposition, we give the planarity of the union power Cayley
graphs for a cyclic group of order, n = pα1

1 pα2

2 . . . pαr
r , with respect to the

subsets of size two.

Proposition 3.7. Let Cn = 〈a〉 be a cyclic group of order n generated by
a, where n = pα1

1 pα2

2 . . . pαr
r and let pi be prime numbers such that p1 < p2 <



852 M. Alshammari, H. I. M. Hassim, N. H. Sarmin, A. Erfanian

p3 < · · · < pr and αi ∈ N. Then the union power Cayley graph of Cn with
respect to a subset of Cn of size two, S(2) = {ai, (ai)−1} ; i ∈ U(n) is not
planar.

Proof. Let Cn be a cyclic group of order n = pα1

1 pα2

2 . . . pαm
m . By Theorem

3.1, Pow−Cay+
(
Cn, S

(2)
)
∼= Kϕ(n)+1+∇n

[
Kϕ(d1)Kϕ(d2), . . . , Kϕ(dm)

]
and by

Proposition 3.2, ω
(
Pow − Cay+

(
Cn, S

(2)
))

= ϕ(n)+ϕ
(

n
p1

)
+· · ·+ϕ

(
n

p
α1

1

)
+

ϕ
(

n
p
α1

1
p2

)
+ · · ·+ ϕ

(
n

p
α1

1
p
α2

2

)
+ · · ·+ ϕ

(
n

p
α1

1
p
α2

2
···pm

)
+ · · ·+ ϕ

(
n

p
α1

1
p
α2

2
···pαm−1

m

)

+ϕ
(

n
p
α1

1
p
α2

2
···pαm

m

)
. Suppose n is the product of the two smallest prime; that is

n = 6. Then ω
(
Pow − Cay+

(
Cn, S

(2)
))

will be greater than four which can-

not be drawn in a plane without edge crossing. Hence Pow−Cay+
(
Cn, S

(2)
)

is not planar.
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