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Abstract

In this work, we show that (0, 0, 0), (1, 0, 2), and (2, 2, 4) are all the
solutions of the exponential Diophantine equation 5x−3y = z

2, where
x, y, z are non-negative integers.

1 Introduction

For over two decades, Exponential Diophantine Equations have been widespread
problems in Number Theory. In 2004, Mihailescu [4] proved Catalan’s conjec-
ture that the exponential Diophantine equation ax−by = 1, where a, b, x and
y are integers with min{a, b, x, y} > 1, has only one solution (a, b, x, y) =
(3, 2, 2, 3). This settled conjecture has been used in finding integer solu-
tions of many Exponential Diophantine Equations. In 2007, Acu [1] proved
that 2x + 5y = z2 has exactly the two solutions (3, 0, 3), (2, 1, 3) in non-
negative integers. In (2011), Suvarnamani et al. [6] studied the two equa-
tions 4x + 7y = z2 and 4x + 11y = z2. In 2018, Rabago [5] discovered all
solutions of the Diophantine Equation 4x−py = z2. Moreover, he discovered
all solutions of 4x − py = 3z2, where p is a prime and p ≡ 3 mod 4. In
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2019, Thongnak et al. [7] studied the equation 2x − 3y = z2 by applying
Mihailescu’s result to prove that there are three solutions to the equation.
In the same year, Burshtein [3] suggested that the Exponential Diophantine
Equation 6x − 11y = z2 has no positive integer solutions when 2 < x ≤ 16.
In 2020, Buosi et al. [2] discovered all positive solutions of the Diophantine
Equation px−2y = z2 with p = k2+2 where p is a prime number and k > 0.

Although many of the Exponential Diophantine Equations have been
studied, there still remain many unsolved problems. In this work, we find
the non-negative integer solutions of the Exponential Diophantine Equation
5x − 3y = z2.

2 Preliminaries

In this part, the basic knowledge of number theory is given to compute and
prove all the non-negative integer solutions to the equation.

Definition 2.1. If n is a positive integer and gcd (a, n) = 1, the least positive
integer k such that ak ≡ 1 mod n is called the order of a modulo n and is
denoted by ordna.

Theorem 2.2. Let the integer a have order k modulo n. Then ah ≡ 1
mod n if and only if k|h; in particular, k|φ (n).

Theorem 2.3. (Euclid’s Lemma) If a|bc and (a, b) = 1, then a|c.

Lemma 2.4. (Catalan’s conjecture) [4] Let a, b, x and y be integers. The
Diophantine equation ax − by = z2 with min{a, b, x, y} > 1 has the unique
solution (a, b, x, y) = (3, 2, 2, 3).

Theorem 2.5. If a|c, b|c and (a, b) = 1, then ab|c.

3 Main results

Theorem 3.1. Let x, y, and z be non-negative integers. The Diophantine
equation 5x−3y = z2 has the three solutions, (x, y, z) = (0, 0, 0), (1, 0, 2), and
(2, 2, 4).

Proof. Let x, y, and z be non-negative integers such that

5x − 3y = z2. (3.1)



On the Exponential Diophantine equation 5x − 3y = z2 101

We begin the proof by considering the following four cases:
Case 1: x = 0, y = 0. From (3.1), we obtain z2 = 0 or z = 0. Hence
(x, y, z) = (0, 0, 0) is a solution.
Case 2: x = 0, y > 0. From (3.1), we have z2 = 1 − 3y < 0, which is
impossible.
Case 3: x > 0, y = 0. (3.1) becomes

5x − z2 = 1. (3.2)

If x = 1, then z2 = 4 or z = 2. Thus (x, y, z) = (1, 0, 2) is a solution.
If x > 1, then 3.2 yields z > 1. By Lemma 2.4 (Catalan’s conjecture), we
can see that (3.2) has no solution for x > 1.
Case 4: x > 0, y > 0. Equation (3.1) implies that z2 ≡ (−1)x mod 3 but
z2 is not equivalent to −1 mod 3. Thus x must be even. Let x = 2k,
∃k ∈ Z+. From (3.1), we obtain 3y = 52k − z2 = (5k − z)(5k + z). There
exists α ∈ Z+∪{0} such that 5k−z = 3α and 5k+z = 3y−α, where α < y−α.
We have 2 · 5k = 3y−α + 3α = 3α(3y−2α + 1). Since 3 ∤ 2 · 5k, α = 0 and

2 · 5k = 3y + 1. (3.3)

We consider y as follows:
If y = 1, then (3.3) becomes 2 · 5k = 4. Thus 5k = 2, which is impossible.
If y = 2, then (3.3) becomes 2 · 5k = 10. We obtain k = 1 and so x = 2 and
z = 4. Hence the solution of (3.1) is (2, 2, 4).
If y > 2, then (3.3) becomes k > 1 and 2 · 5k − 10 = 3y − 9 or 10(5k−1− 1) =
9(3y−2 − 1). Let m = k − 1 > 0 and n = y − 2 > 0. We obtain

10(5m − 1) = 9(3n − 1). (3.4)

From (3.4), 5|9(3n − 1). Since gcd(5, 9) = 1, we also obtain 3n ≡ 1 mod 5.
Since ord53 = 4, 4|n. Again by (3.4), we find that 9|10(5m − 1). This means
that 9|5m − 1 or 5m ≡ 1 mod 9 because gcd(9, 10) = 1. Since ord95 = 6,
5m ≡ 1 mod 9 implies that 6|m. That is, m = 6t, ∃ t ∈ Z+. By considering
(3.4), since 56t ≡ 1 mod 31, we then obtain 31|9(3n − 1). With gcd(9, 31) =
1, this implies that 31|3n − 1 or 3n ≡ 1 mod 31. Since ord313 = 30, we
obtain 30|n which implies that 5|n. Now, 4|n and 5|n with gcd(4, 5) = 1. So
20|n. Assume n = 20l, ∃ l ∈ Z+. We have 3n = 320l ≡ 1 mod 25 or 25|3n−1.
Again by (3.4), we obtain 25|10(5m− 1) or 5|2(5m− 1) . Since gcd(2, 5) = 1,
we can write 5|5m − 1, which is impossible. The proof is now complete.
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4 Conclusion

In this work, we have found all the non-negative integer solutions of the expo-
nential Diophantine Equation 5x−3y = z2 using four cases based on the x and
y values. The non-negative integer solution set is {(0, 0, 0), (1, 0, 2), (2, 2, 4)}.
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